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Abstract

Using detailed purchase order data for a large sample of US hospitals 2009-15, we
document large price dispersion across hospital buyers for identical brands in a variety
of important medical supply categories. Hospitals also vary dramatically in the size and
composition of the set of suppliers they contract with, and on average contract with
an order of magnitude fewer suppliers than are available in the market. We develop
a model and identification strategy to determine the extent to which this dispersion
is determined by brand preferences, search/contracting costs, and bargaining abilities.
Estimates suggest that markups are primarily driven by lack of price sensitivity among
health care providers in their usage decisions. Hospital administrator bargaining ability
varies widely across hospitals, driving most of the observed price dispersion. Reducing
search/contracting costs does reduce prices and price dispersion, but mostly impacts
hospital surplus through putting higher value brands in the choice set. These effects
vary dramatically across device categories, hospitals, and brands. Hospitals with previ-
ously small and low quality choice sets gain enormously from lower search costs, while
others gain more modestly. Similarly, some high value, high search cost brands go from
infrequent to heavy use across the market, while other brands’ profits decrease.
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1 Introduction

Business-to-business markets, in which buyer firms contract with a set of suppliers to fulfill

their input needs, comprise a large part of the economy. The Law of One Price is frequently

violated in such markets, with a large degree of price dispersion across buyers for similar

or even identical brands. The underlying economic mechanisms and frictions driving price

dispersion in business-to-business settings include: heterogenous demand for differentiated

products and bargaining abilities in television content (Chipty and Snyder 1999; Crawford

and Yurukoglu 2012), medical devices (Grennan 2013, 2014), and hospital services (Ho 2009;

Ho and Lee 2017); search/contracting costs for buyers seeking to add a supplier in coal

(Stigler 1961) and sanitation (Salz 2017); and strategic exclusion of suppliers in video rentals

(Ho et al. 2012), hospital services (Sorensen 2003; Ho and Lee 2018), and pharmaceuticals

(Starc and Swanson 2018). Price dispersion in such markets is important because it is

typically an indicator of market power among suppliers and/or buyers (Hemphill and Rose

2018), with implications for static and dynamic efficiency. These prices impact buyer firm

profitability in the short run, and, due to their intermediate place in vertical supply chains,

downstream market efficiency in the long run.

In this paper, we quantify the economic mechanisms underlying price dispersion for a

wide variety of consumable hospital supply markets. These markets exhibit large price

dispersion, with coefficients of variation across hospitals for the exact same brand-month in

the range 0.05-0.33 (Grennan and Swanson 2019).1 Consumable hospital supplies are also

important inputs in hospital care, representing 24 percent of hospital operating costs.2 Thus,

the variation in these input prices is meaningful in terms of its potential impact on both

hospital margins and downstream markets for hospital services.3

We focus on three mechanisms that we expect to be particularly relevant in the hos-

pital supply context: (1) heterogeneity in users’ preferences; (2) heterogeneity in relative

bargaining weights; and (3) contracting frictions – encompassing the process of searching

for suppliers and acquiring the information and cooperation needed to develop a new buyer-

supplier relationship.4 At the point of use, medical supplies are selected by individuals, often

1To put these numbers in perspective, note that the average input price variation documented in Grennan
and Swanson (2019) is approximately half the coefficient of variation for common procedure prices charged
by hospitals in different markets (Cooper et al. 2018). It is near the top of the range of coefficients of
variation found in consumer goods markets (Scholten and Smith 2002).

2Consumable supplies are the second largest component of hospital operating costs, after labor (Craig
et al. 2018).

3According to the American Hospital Association 2018 Trendbook, the average hospital operating margin
in 1995-2016 was 4.4 percent (https://www.aha.org/system/files/2018-05/2018-chartbook-table-4-1.pdf).

4Throughout this paper, we use the terms “search” or “contracting” costs to refer to any costs of adding
a brand to a hospital’s consideration set.
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physicians, whose usage is price-insensitive and may be brand-loyal.5 However, hospital pur-

chasing administrators negotiate the contracts that add brands to the consideration set, and

the hospital pays the price of the brands contracted and used. Hospitals and physicians of-

ten disagree about tradeoffs regarding price and perceived quality across competing brands,

and agency conflicts emerge: physicians would like purchasing administrators to establish

contracts for their preferred brands, hospital managers would like purchasing agents to seek

and negotiate low prices for high-value brands, and hospital managers would like physicians

to choose high-value brands within the contracted set. These agency conflicts have been

a source of tension within hospitals, and past efforts by hospitals to standardize surgical

materials and devices have encountered significant resistance from surgeons (Nugent et al.

1999). However, hospitals vary dramatically along several dimensions which are likely to

mediate these conflicts: management practices (McConnell et al. 2013; Bloom et al. 2014),

alignment with physicians (Ketcham et al. 2009; Baker et al. 2014; Swanson 2019), and

reliance on purchasing and information intermediaries (Schneller 2009; Grennan and Swan-

son 2019). Industry participants and policymakers are eager to understand which, if any,

of these features improve purchasing outcomes. Thus, it is an important and difficult task

to understand the relative importance of the demand, bargaining, and search/contracting

mechanisms in generating the observed variation.6

We present and estimate a structural empirical model that allows for equilibrium supplier

networks, prices, and quantities to be determined by the interaction of search/contracting

costs, demand preferences, and bargaining, any of which may vary across buyer-supplier

pairs. We estimate the model using detailed data on hospital purchase orders for a sample

of US hospitals, including monthly prices and quantities at the vendor, manufacturer, and

stock keeping unit (SKU) level. We estimate the model separately across 19 different product

categories that are important in terms of total hospital expenditure. The breadth of these

product categories – including “physician preference items” (PPIs) (e.g. knee implants),

commodities (e.g. surgical gloves), and other medical/surgical products (e.g. catheters) –

allow us to analyze a fairly representative set of hospital supply purchases, including cate-

gories that likely vary in importance of the underlying mechanisms. For example, comparing

PPIs to commodities and other medical/surgical products, hospitals rely on purchasing in-

termediaries less for PPIs (Schneller 2009), physician preferences are expected to be stronger

for PPIs, and the total set of brands available to search over is smaller for PPIs. Despite these

5At an extreme, usage of devices known as “physician preference items” (PPIs) such as cardiac and
orthopedic implants are associated with strong brand preferences.

6The latter space is evolving rapidly, as the increasing digitization of the hospital supply chain has led to
the emergence of intermediaries, including Amazon.com Inc., seeking to use data and analytics to facilitate
easier search and contracting across suppliers (Evans and Stevens 2018).
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differences, we document similar price dispersion for PPIs and non-PPI product categories.

The primary challenge to estimating an empirical model that simultaneously allows for

search costs, preference heterogeneity, and bargaining heterogeneity is to separately identify

these different mechanisms. This issue is easily seen by considering each separate pair of

factors individually. First, the presence of both search costs and preference heterogeneity

introduces an identification problem similar to the familiar selection problem in the labor

economics literature (beginning with Heckman 1979): the unobservable shocks in the de-

mand equation may be correlated with the process that generated the set of brands under

consideration. Second, the presence of both search costs and bargaining in a market may

lead to bias in models that only account for one or the other. For example, high search costs

can reduce consumers’ bargaining leverage and mute the effect of supply-side concentration

on prices (Allen et al. 2013, 2018). Finally, the effect of any source of market power, con-

centration or search, is further muted by the fact that hospitals exercise their monopsony

power and negotiate prices that are even lower than competition and their outside options

alone might suggest. A number of researchers have shown the importance of modeling the

bargaining stage in models with differentiated products demand and negotiated prices.7

Our identification approach proceeds as follows. First, we contend with the endogeneity

of the consideration set using a similar logic as that in Hausman (1996) and Nevo (2001) –

rather than using prices of the same good in other markets as cost shifters, we use exposure

variables capturing interactions with the same vendor in other, unrelated product categories

as search cost shifters. Our exclusion restriction is that exposure to vendors in unrelated

product categories impacts formation of the consideration set, but does not reflect correlated

preferences over vendors across unrelated product categories, conditional on the consideration

set and controls. The institutional details underlying this strategy are in Section 2.2.

Second, we jointly estimate differentiated products demand using observed brand shares

within each hospital-year consideration set, and marginal costs and bargaining parameters

in a Nash-in-Nash bargaining framework. Estimation of preferences relies on rich and plau-

sibly exogenous variation in consideration sets over time, and estimation of price sensitivity

relies on price shocks occurring when hospitals subscribed to a benchmarking database, as

documented in Grennan and Swanson (2019). Relative bargaining abilities for each brand-

hospital pair are identified by the extent to which a brand’s price changes as the added value

of the brand to the hospital changes.

Finally, we use observed consideration sets and demand and supply parameter estimates

7See, e.g., Grennan (2013) regarding medical devices, and also Gowrisankaran et al. (2015) regarding
insurer-hospital negotiations, for cases where inelastic demand from end-users would imply negative marginal
costs when prices are modeled as the outcome of a Bertrand pricing game, but the estimates from a bargaining
model imply more reasonable marginal costs.
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to infer search/contracting costs. Search costs rationalize which brands are included in vs.

excluded from hospitals’ consideration sets, given supply and demand parameters. We do not

observe buyer search in the way that online studies observe it (e.g., Dinerstein et al. (2018)

observe actual browsing data from eBay); however, we do leverage rich panel variation in

demand realizations and consideration sets over time, which provides similar identifying in-

formation. Our moment inequalities approach identifies search costs using simple conditions:

e.g., that if a brand is in the consideration set, it must have been optimal to search at some

point (when brands are substitutes, the highest possible added value is relative to the out-

side good); and that if a brand is not in the consideration set, it must not have been worth

searching (again when brands are substitutes, the lowest possible added value is relative to

the full consideration set).8

The demand and bargaining model estimates illustrate several interesting and intuitive

patterns. First, while demand for all products is fairly price-insensitive, demand for physician

preference items is more than an order of magnitude less price-sensitive than demand for

more commoditized, non-PPI medical/surgical products. Second, supplier firms tend to

capture a greater portion of the total surplus generated by hospital supply negotiations for

PPIs than for other products. These patterns are consistent with the widely-held belief

that PPIs are overpriced due to misalignment between the objectives of hospitals (i.e., the

purchasers) and physicians (i.e., the users) (Robinson 2008).

With the estimated demand and bargaining models, we are able to make progress in de-

composing the price variation across hospitals, and also understanding the sources of market

power that make this variation possible. We do this by computing a series of counterfactual

equilibria where we alternately shut down heterogeneity across hospitals in demand and bar-

gaining. Holding choice sets fixed as observed in the data, we estimate that price variation

across hospitals is driven primarily by bargaining (especially in commodities); but demand

heterogeneity also accounts for substantial price variation. This is important for several rea-

sons. First, while research suggests that hospitals have made substantial improvements in

purchasing of commodities since the introduction of the prospective payment system, these

results indicate that there is still considerable heterogeneity driven by relative bargaining

power. This bargaining power variation could in turn capture heterogeneity in management

8This approach is complementary to recent work on bargaining with strategic exclusion, in which buyers’
ability to replace contracted suppliers with substitutes outside the consideration set enables them to elicit
greater price discounts (see e.g., Ho and Lee (2018)). Strategic exclusion may play a role in our setting,
but a model with both search and strategic exclusion is computationally infeasible, given the large sets of
potential suppliers in our setting. Our interpretation of qualitative interviews with purchasing executives and
quantitative evidence in the data (e.g., the brands excluded from hospitals’ consideration sets are difficult to
rationalize using strategic exclusion alone) is that search/contracting costs are a dominant factor that limits
consideration set sizes in the hospital supply setting, and thus we choose to focus on them in our analysis.
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(Bloom et al. 2014), information (Grennan and Swanson 2019), or something else (Lewis and

Pflum 2015). Second, the results confirm that preference heterogeneity generates significant

market power for PPIs – the welfare impact of this preference heterogeneity will depend on

whether it is driven by true product differentiation in quality vs. physician-specific brand

preferences generated by marketing.

The search cost estimates suggest that contracting frictions are on the order of 5 percent

of price, on average. In order to better understand the impact of these costs on the market,

we consider counterfactuals where we lower search costs by one half, allow hospitals to

optimally add additional brands to their choice sets, and compute equilibrium prices and

quantities for these new choice sets. This sheds light on the role of search/contracting

costs in generating markups (see, e.g., Hortacsu and Syverson (2004); Allen et al. (2018);

Galenianos and Gavazza (2018)), and the interactions of search with demand and bargaining.

As choice set sizes increase, average prices decrease, but relatively little. The largest gains

from lowering contracting frictions appear to be the expected consumer surplus gains from

increasing choice, not increasing price competition.

This paper contributes to the growing literature on empirical models of negotiated price

markets based on “Nash-in-Nash” bargaining (Crawford and Yurukoglu 2012; Grennan 2013,

2014; Gowrisankaran et al. 2015; Ho and Lee 2017). Whereas prior studies have typically

taken the set of buyer-supplier relationships as given, we consider the role of frictions in the

search/contracting process and how it interacts with demand and bargaining to generate

markups and price dispersion across buyers. In this aspect, our study is most closely related

to Allen et al. (2018)’s study of search and negotiation of mortgage quotes and Salz (2017)’s

study of waste management contracts, though our modeling differs substantially due to the

different data and institutional contexts. Our approach to search, using moment inequalities

based on stability conditions, is also related in spirit to Ghili (2018), but our “weaker”

stability conditions are built to be consistent with a wide variety of processes that have

been considered the the industrial organization search literature (Sorensen 2003; Hortacsu

and Syverson 2004; Hong and Shum 2006; Honka 2014). While limiting the counterfactuals

that can be considered, our approach provides one path forward for cases where buyers

contract with a set of differentiated substitute suppliers for needs that are realized over

time, a common scenario in business-to-business markets.

A final noteworthy contribution of this paper is the large number and variety of product

markets we are able to analyze. In this way, our study is a bridge between the literature

on price dispersion across markets (Scholten and Smith 2002; Kaplan and Menzio 2015) and

the in-depth empirical case studies in bargaining and search above.
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2 Data and Background on Hospital Purchasing

Health care in the hospital setting has high fixed capital costs in the form of facilities and

equipment, but it also has high variable costs in the form of skilled labor, pharmaceuticals,

and consumable supplies such as implantable medical devices. The price dispersion we

document in this setting is particularly notable because, in the short run, hospitals are

typically reimbursed a fixed amount by private or public insurers for the services they provide.

Thus, variations in supply prices have a direct impact on hospitals’ bottom lines.9 In this

Section, we provide some background on how consumable medical supplies are used and

purchased, and we describe the unique data set and research setting that allow us to analyze

the determinants of price dispersion.

2.1 Hospital Purchase Order Data

The primary data used in this study come from a unique database of consumable supply

purchases made by a large number of US hospitals during the period 2009-2015. The data

are from the PriceGuide
TM

benchmarking service (hereafter, “PriceGuide data”) offered by

the ECRI Institute, a non-profit health care research organization. For each transaction,

we observe price, quantity, transaction month, and supplier for a wide range of product

categories.

The reported price and quantity data are of high quality because they are typically

transmitted as a direct extract from a hospital’s materials management database. The

PriceGuide
TM

benchmarking service compares each hospital’s submitted data to that of oth-

ers in the database and generates several analyses of the hospital’s savings opportunities;

thus, the hospitals have strong incentives to report prices accurately. Related to its materials

management origins, the data is at the stock-keeping-unit (SKU) level, requiring us to use

machine learning algorithms to group SKUs that belong to the same manufacturer-brand.10

For stents and surgical staplers, we also validate our algorithms against data collected from

manufacturer catalogs and find that our machine learning algorithm performs well in iden-

tifying brands. See Appendix A for details.

9The supplies in our database comprise 24 percent of hospital operating costs (Craig et al. 2018).
10The goal of the machine learning procedure is to identify the level of product at which hospital-supplier

contracts are negotiated. E.g., for stents, prices are negotiated separately for each brand, and each brand
subsumes a large number of SKUs. We use the RE-EM tree package to flexibly group SKUs (defined by
a set of dummies for all potential alphanumeric characters in each SKU position) into brands based on
observed price variation within each manufacturer-vendor combination. In Appendix C, we present results
for alternative aggregations of SKUs and find our results qualitatively unchanged.
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2.1.1 Representativeness of the benchmarking database sample

The hospitals in the purchase order data voluntarily joined a subscription service that allows

them to benchmark their own prices and quantities to those of other hospitals in the database

and thus may not be a random sample of US hospitals. In particular, subscription is costly,

so we expect hospitals with greater concerns about supply costs to be overrepresented in the

database. In a survey of database members, “cost reduction on PPIs” and “cost reduction

on commodities” were the first and second (and nearly tied) most commonly cited reasons

for joining. As discussed in detail in Grennan and Swanson (2019), we do not find evidence

that hospitals differentially join the database during times where prices are trending up or

down relative to market price trends. However, we do note that the PriceGuide members

are overrepresented in the American west and underrepresented in the south, and that they

are larger than the average US hospital.

2.2 Product Categories

Each transaction in our data includes a product category identifier from the ECRI Institute’s

Universal Medical Device Nomenclature System (UMDNS).11 We chose the products for this

analysis as those in the top 100 UMDNS codes by total spending; we then removed prod-

ucts that were overly broad (e.g., “office supplies”), those that had missing or inconsistent

quantity data, those whose files were too large for us to estimate supply and demand with a

reasonable bound on computing resources, and those for which the identification strategy we

use to address endogenous consideration set formation is not sufficiently powerful.12 After

applying these filters, 19 top product categories remain. In many of our analyses, we sepa-

rately consider product categories by class according to the Food and Drug Administration’s

classification system. Specifically, we distinguish FDA risk class III from FDA risk classes

I-II; for brevity of notation, we refer to class III supplies as physician preference items (PPIs)

and to classes I-II as non-PPIs.13

11A note on terminology: throughout this draft, we use “product category” to refer to the UMDNS
grouping included in the transaction files. The UMDNS system is employed to classify any device or supply
based on its intended purpose, with some distinctions for mechanism of action. It covers all medical devices
and supplies, clinical laboratory equipment and reagents, and selected hospital furniture, among other items.
For example, drug-eluting coronary stents have UMDNS code 20383. For a finer level of distinction, we use
the term “brand” to refer to the “product” level at which prices are negotiated – e.g., Medtronic Resolute
Integrity drug-eluting coronary stent. The use of “brand” is not meant to connote any particular marketing
strategy. Finally, for a coarser level of distinction, we use “product class” to refer to broad groupings of
product categories: physician preference items (PPIs) such as drug-eluting coronary stents, and non-PPIs
such as surgical gloves.

12See Appendix A for the lists of product categories removed at each step.
13Class I devices, such as gloves, are deemed to be low risk and are therefore subject to the least regulatory

controls. Class II devices, such as catheters, are higher risk devices with greater regulatory controls to provide
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The top panel of Table 1 summarizes our data for non-PPIs; product categories are listed

in decreasing order of average yearly spend.14 Some of these product categories are roughly

commodities, such as surgical gloves: products that can be used in a hospital setting by staff

members with a variety of roles and scopes of practice. Conditional on a few characteris-

tics, such as material, we do not expect particular manufacturers or brands to be strongly

preferred.15 Non-PPIs also include other medical and surgical items that may be important

inputs in moderately invasive procedures, and that may or may not be associated with strong

brand preferences. For example, electrophysiologists may have strong preferences over the

ablation/mapping catheters they employ in ablation procedures. Non-PPIs are a quite het-

erogeneous category: as shown in Table 1, these product categories vary in popularity, and

spending per hospital-year varies from $19 thousand to $457 thousand. Similarly, price per

unit varies from less than a dollar (isolation gowns) to $2,691 (bone grafts). Non-PPIs are

purchased by 494 sample hospitals on average.16 The variation in negotiated price across

hospitals depends on the UMDNS code under consideration: for surgical gloves, the coeffi-

cient of variation across hospitals, within brand-time, is only 0.07, while for trocars, the CV

is 0.21. There are many brands to choose from, but hospitals may have limited awareness

of the total set of brands (and corresponding prices) available: the average hospital only

purchases |Jh| = 7 of the 132 unique brands available for the average non-PPI UMDNS code

in a given year. Even more notably, it is usually the case that the most popular brand j∗ is

not purchased by the majority of hospitals: on average, the probability that j∗ is in hospital

h’s consideration set Jh is only 0.38. For non-PPI product categories, particularly the more

commodity-like categories, this is unlikely to be driven by provider preference heterogene-

ity; it seems much more likely that supply factors, such as contracting frictions, drive this

reasonable assurance of the devices’ safety and effectiveness. Class III devices, such as replacement heart
valves and coronary stents, are the highest risk devices and must typically be approved by FDA before they
are marketed.

14Table 1 summarizes data for final analytic sample. See Appendix A.1 for details regarding data cleaning.
15We excluded many commodities from our set of focal product categories due to inconsistencies across

hospitals in how quantities are reported. Exam gloves, one of the most popular product categories in our
data, are excluded for this reason.

16The full dataset contains 1,228 hospitals, but we restrict analysis in each product category to hospitals
purchasing the given product category in significant volumes, those for which we observe the date they joined
the benchmarking service, and those we were able to match to external hospital characteristics. To perform
the analysis in the current study, we obtained permission to contract a trusted third-party to match facilities
in the PriceGuide data to outside data on hospital characteristics from the American Hospital Association
(AHA) annual surveys. The third-party then provided us with access to the merged data for analysis, with
hospital-identifiable information removed. See Appendix A.1 for details.
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variation.17

PPIs are summarized in the bottom panel of Table 1. We examine four important PPIs:

drug-eluting coronary stents, acetabular hip prostheses, humeral shoulder prostheses, and

patellar knee prostheses. For physician preference items, usage is driven by strong brand

preferences of physicians, often surgeons, choosing which product to use to treat a given

patient. These strong PPI brand preferences are frequently noted in policy discussions. PPIs

tend to be expensive, high-tech products used in specific, advanced procedures – often cardiac

and orthopedic procedures – and are thus not necessarily purchased by all hospitals: only

414 sample hospitals purchased the average PPI. At the extreme, only 321 sample hospitals

purchased humeral shoulder prostheses. The average hospital purchasing PPIs spends $398

thousand per year on each PPI UMDNS code. The coefficients of variation for PPIs are in

a similar range as those observed for non-PPIs, but given how expensive PPIs are ($1,303

per unit on average), the dollar values of the price variations observed across hospitals are

more extreme. These product categories can often only be purchased directly from one of

a few manufacturers, and manufacturers exert substantial effort in marketing their brands

to hospitals with relevant patients. It is thus not surprising that we observe relatively more

comprehensive consideration sets: the average hospital’s consideration set contains |Jh| = 11

brands, of the |J | = 79 available, and the modal brand is in most hospitals’ consideration

sets (Pr[j∗ ∈ Jh] = 0.66).

2.3 Institutions: Hospital Contracting Environment

Hospitals purchase thousands of product categories, and prices for most of these product cat-

egories are determined in negotiation. In determining which brands to contract, purchasers

within a hospital must factor in clinical value, safety, cost, and other conditions of sale and

service (e.g., for capital equipment, which is not in our data, maintenance is an important

consideration). Negotiation can take place directly between a hospital administrator and

a representative of the brand’s manufacturer, or hospitals may rely on group purchasing

organizations or other contracting coalitions to negotiate their contracts. GPO prices are

often used as a starting point for direct hospital-manufacturer negotiations for physician

preference items and capital equipment (Schneller 2009).18

17In Appendix D, we ultimately use our detailed demand and costs estimates to explore the extent to
which these choice sets could be rationalized by a model of strategic exclusion with no search/contracting
frictions, and we find that hospital-brand specific preferences would have to be extremely negative, relative
to our estimated distributions, across all brands in J \ Jh, to rationalize such a model.

18A GAO report from 2003 noted that there are hundreds of GPOs, some of which operate regionally;
however, at the time of the study, seven national GPOs with purchasing volumes over $1 billion accounted
for more than 85 percent of all hospital purchases nationwide made through GPO contracts.
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Table 1: Summary of Purchasing Categories

Nh Annual
Spend
$1000s

p |J | |Jh| Pr[j∗ ∈
Jh]

Pr[j∗ =
j∗h]

µ σ
µ

µ σ
µ

Other Medical/Surgical Supplies (Non-PPIs)
Linen Underpads 602 $32 $0.30 0.08 84 2 0.58 0.16 0.11
Isolation Gowns 501 $19 $0.45 0.08 56 2 0.55 0.19 0.13
Surgical Gloves 758 $86 $0.86 0.07 220 7 0.62 0.25 0.09
Pulse Oximeter Probes 366 $146 $10 0.18 101 5 0.59 0.15 0.10
Liquid Adhesives 696 $59 $17 0.12 70 2 0.54 0.35 0.24
Pneumatic Compression Cuffs 351 $102 $19 0.11 55 3 0.58 0.30 0.26
Trocars 669 $64 $35 0.21 218 7 0.53 0.35 0.12
GI Staples 609 $125 $133 0.18 172 6 0.56 0.30 0.16
Linear Staplers 583 $84 $142 0.14 134 6 0.58 0.19 0.10
Orthopedic Fixation Systems 441 $127 $396 0.20 134 17 0.58 0.76 0.36
Hemostatic Media 290 $120 $447 0.06 19 3 0.45 0.64 0.34
Electrosurgical Forceps 453 $168 $523 0.20 88 8 0.56 0.64 0.40
Ablation/Mapping Cath. 324 $423 $880 0.14 131 18 0.48 0.49 0.20
Allografts 369 $226 $956 0.14 364 15 0.59 0.24 0.07
Bone Grafts 393 $457 $2,691 0.13 128 9 0.48 0.72 0.20
Average(15) 494 $149 $417 0.14 132 7 0.55 0.38 0.19
Physician Preference Items (PPIs)
Patellar Knee Prosth. 470 $100 $414 0.24 31 5 0.54 0.61 0.23
Acetabular Hip Prosth. 516 $276 $1,152 0.23 157 18 0.59 0.75 0.34
Drug Eluting Stents 351 $995 $1,471 0.06 10 4 0.37 0.84 0.40
Humeral Shoulder Prosth. 321 $222 $2,173 0.21 116 16 0.42 0.45 0.12
Average(4) 414 $398 $1,303 0.18 79 11 0.48 0.66 0.27

Providers – who are the end users who ultimately decide when and what brands to use,

conditional on patient needs – can also play a role in choosing which suppliers are contracted

with, particularly for medical devices like PPIs. For this reason, suppliers and their repre-

sentatives work closely with physicians and hospital support staff in order to promote their

brands, provide training for new brands, and even provide on-site technical assistance in the

operating suite (Montgomery and Schneller 2007). This implies that suppliers’ representa-

tives have highly specialized knowledge about their brands and physician users. As noted

above, hospitals typically purchase a small share of the brands available in a given product

category. This may be due to heterogeneity in preferences: we would expect a hospital to

be more likely to contract a given brand and thus include it in its consideration set for

use in procedures if it is particularly preferred by the hospital’s affiliated physicians. This

phenomenon may also be driven by factors that vary across hospital-vendor pairs, such as

distribution costs and search/contracting frictions.

In our demand analysis, we use this logic to motivate an identification strategy based on

factors that impact search/contracting frictions, but not end-user preferences, across multiple

dissimilar product categories. For example, a supply chain administrator who has found

Medtronic easy to work with in procuring coronary stents may also be more likely to consider

Medtronic as a supplier of tracheal tubes, despite the fact that these product categories
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have different staff users, therapeutic indications, and levels of technological sophistication.

We argue that, conditional on appropriate controls, search/contracting frictions such as

these are likely to generate correlations across dissimilar product categories in terms of

which brands enter the consideration set (i.e., which brands are in the storeroom), but

that the siloed and specialized nature of medical device sales and training implies that user

(i.e., physician) preferences over particular brands are likely uncorrelated across sufficiently

dissimilar categories, conditional on consideration sets.19

We define “sufficiently dissimilar categories” by starting with the UMDNS system, which

imposes a hierarchy over product categories based on their intended use. For example, Figure

1 below displays part of this hierarchy as a tree structure with up to seven splits leading to

coronary drug-eluting stents. Coronary drug-eluting stents (in pink) are directly under the

parent code for coronary balloon-expandable stents, less directly under the parent code for

non-active implantable devices. Polymeric mesh and bone grafts (in green) are also under

the parent code for non-active implantable devices, while cardiac pacemakers (in yellow)

are instead under the parent code for active implantable devices. The most distant product

category from coronary drug-eluting stents in this example is tracheal tubes (in yellow),

which are not under the parent code for implants and prostheses. In our empirical analysis,

we will assume that, conditional on having contracts for both Medtronic tracheal tubes

and Medtronic stents, users in those product categories’ verticals do not have correlated

preferences over Medtronic brands at the point of usage.20

We use the above hierarchy to flag each pair of UMDNS codes (among the top 200 in

overall spending) as likely similar (“near”) or dissimilar (“far”). A “near” pair is one with

more than one shared parent in the UMDNS tree structure. In the above example, tracheal

tubes and cardiac pacemakers are classified as “far” from coronary drug-eluting stents, while

polymeric mesh and bone grafts are classified as “near.” Starting with this set of candidate

“far” pairs, we then identified each pair with significant vendor overlap – UMDNS code A

and UMDNS code B have “significant vendor overlap” if at least 70 percent of spending in A

is contributed by vendors that sell products in B. Finally, among the pairs with significant

vendor overlap, we checked whether each product category would typically be used in the

same or similar procedures; for example, balloon catheters and coronary stents are used in

the same procedures; cardiac valve prostheses and annuloplasty rings are used in different

procedures for heart valve abnormalities.21 Our final list of dissimilar pairs of UMDNS codes

19Our exclusion restriction is discussed more precisely in Section 3.1.1 below.
20In the remainder of the paper, we use the term “vertical” to denote unique purchasing entities within

hospitals.
21To perform the check for whether a given pair of product categories is used in the same or similar

procedures, we engaged a nursing student to create a database of common procedure codes and descriptions
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Figure 1: UMDNS Code Hierarchy

UMDNS

Anesthesia/Respiratory	
Equipment	and	Supplies

(HT1000)

Tubes,	Tracheal
(14085)

Implants	and	Prosthesis	
(HT1008)

Active	Implantable	Devices
(HT2501)

Pacemakers	and	
Defibrillators
(HT2000)

Pacemakers,	Cardiac,	
Implantable
(12913)

Non-Active	Implantable	
Devices	
(HT2500)

Mesh
(16042)

Mesh,	Polymeric
(12510)

Grafts
(11908)

Grafts,	Bone
(11910)

Stents
(15784)

Stents,	Vascular
(17461)

Stents,	Vascular,	Coronary
(18237)

Stents,	Vascular,	Coronary,	
Balloon	–Expandable

(20422)

Stents,	Vascular,	Coronary,	
Balloon	Expandable,	Drug-

Eluting
(20383)

are those that are “far” according to the UMDNS tree hierarchy, and that either do not have

significant vendor overlap, or do have significant vendor overlap but are not used in the same

or similar procedures.

In the identification strategy laid out in Section 3.1.1 below, we use exposure of a given

hospital-vendor pair across dissimilar product categories by this definition to address a form

of selection bias. Selection bias is potentially introduced by the fact that we only observe

demand realizations for the brands in a given hospital’s contracted consideration set, which

are likely those that are particularly preferred by the hospital’s physicians.

for each product category. She then cross-referenced the lists of codes and descriptions across product
categories in each pair with significant vendor overlap.
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2.3.1 Observed determinants of price

In this business-to-business bargaining setting, we expect prices, quantities, and the size of

consideration sets in a given product category to be a function of users’ preferences, relative

bargaining power, search and contracting frictions, and the gradient between consideration

set size and price. In this Section, we provide preliminary evidence that a large dispersion in

price across hospitals persists, even after taking into account each of the features that con-

ventional wisdom predicts would have large effects: 1) purchaser size, measured by hospital

(and affiliated system) bed size and purchase quantity; 2) strategic exclusion in the form of

standardization; and 3) contracting the services of a group purchasing organization. The

basic framework for this analysis is the following equation:

ln(pujht) = θujt +Xht ∗ β + εujht

where the dependent variable ln(pjht) is the price that hospital h pays for brand j of UMDNS

code u in year t; Xht are characteristics of hospital h in year t; εujht are residuals. In the

main text, we report and discuss the pooled coefficients βNon−PPI and βPPI from a regression

of all observations in the Non-PPI and PPI classes, weighting each UMDNS code-specific

observation by that UMDNS code’s aggregate yearly spending across all included hospitals in

the analytic sample. All continuous covariates in Xht are standardized within each product

category, and ujt fixed effects are included in all specifications. Thus, a coefficient of β̂ck = 0.1

would suggest that, on average, a standard deviation increase in Xhtk leads to a 10 percent

increase in price for the categories in class c.

The left panel of Figure 2 shows the pooled effects of various purchaser characteristics

on prices in the Non-PPI class. The analogous results for PPIs are in the right panel.22

First, consider the role of purchaser size. Conventional wisdom holds that large buyers

will obtain better prices, and hospital leaders use this logic to argue before antitrust author-

ities that horizontal mergers will reduce costs (Craig et al. 2018; Noether and May 2017).

That said, a large theoretical literature notes that the effect of size on prices depends on sev-

eral factors, including the supplier competition and the curvature of the bargaining-surplus

function.23 The top four points in each panel of Figure 2 show the correlations of price with

several measures of purchaser size – hospital beds, total beds in hospital’s affiliated system,

total units purchased in the hospital-year (qht), and total units purchased in the system-year

(
∑

h′∈s(h) qh′t). For non-PPIs, each estimate indicates that larger purchasers obtain slightly

22In each panel, point estimates and 95% confidence intervals are plotted, with standard errors clustered
by UMDNS code-hospital. Appendix Table A3 contains the same results for each individual product category.

23See, e.g., Horn and Wolinsky (1988); Stole and Zwiebel (1996); Chipty and Snyder (1999); Inderst and
Wey (2007); Snyder (1996, 1998); Dana (2012); Gans and King (2002); Marvel and Yang (2008).
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lower prices – the largest effect indicates that a standard deviation increase in total pur-

chasing at the system level is associated with a 0.8 percent decrease in prices for non-PPI

product categories. We see somewhat different patterns for PPIs – hospital and system bed

size have small positive effects on PPI prices, whereas a standard deviation increase in hospi-

tal (system) purchase volume is associated with a 3.2 (3.7) percent decrease in PPI prices.24

In sum, purchaser size is associated with a small, but significant, decrease in prices, which

is larger for PPIs than for non-PPIs.

Next, we examine the effect of consideration set size on prices. The classic “Nash-in-Nash”

model used in empirical bargaining studies generates a clear prediction that, if brands are

substitutes, the addition of a brand to the set a hospital contracts with (Jh) will weakly

decrease the negotiated price of the other brands in the set, as an additional substitute

reduces the gains from trade for inframarginal brands. A more nuanced set of predictions

can be obtained from models in the recent empirical bargaining literature that allow firms

to strategically employ small consideration sets in order to extract larger discounts from

included vendors (e.g., Ho and Lee 2018; Ghili 2018; Liebman 2018). This practice is known

as “standardization” in the hospital industry, and is thought to be a useful source of savings

(Noether and May 2017). Models with this type of exclusion, such as the Nash-in-Nash with

Threat of Replacement model proposed by Ho and Lee (2018), may predict that, for a given

set of potential suppliers J potential, prices will be increasing in the size of the set the hospital

contracts with Jh (at the margin, if exclusion is optimally applied).25 There is compelling

empirical evidence from other contexts that restrictive networks of health care providers

(Ho and Lee 2018; Gruber and McKnight 2016; Sorensen 2003), restrictive drug formularies

(Duggan and Scott Morton 2010), and restrictive pharmacy networks (Starc and Swanson

2018) can lead to lower costs for insurers. However, hard evidence on the ubiquity or useful-

ness of standardization in supply procurement is scarce, and Grennan and Swanson (2019)

found no evidence of either for coronary stents. The next two points in each panel of Figure

2 show the association between price and two measures of standardization – a dummy for

the hospital-category-year being fully standardized with one vendor, and a dummy for being

“almost” standardized with 80 percent share going to one vendor.26 As shown in Appendix

Table A4, standardization is quite rare in our data: 5 (1) percent of non-PPIs (PPIs) are

24This is consistent with the finding in Grennan and Swanson (2019) that there is a steeper gradient in
coronary stent prices with respect to purchase volume than there is with respect to hospital bed size; indeed,
small specialty hospitals may purchase PPIs in greater quantities than similarly-sized acute care hospitals.

25In related theoretical work, Dana (2012) posits that buyer groups’ primary advantage results from their
commitment to purchase from a single supplier in differentiated product markets.

26Standardization on a single vendor is clearly a more extreme form of exclusion than the “narrow net-
works” contemplated in the insurer-hospital bargaining literature (Ho and Lee 2018; Ghili 2018; Liebman
2018); however, it is widely advocated as a source of supply chain savings to hospitals.
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Figure 2: Correlation between pjht and Xht

(a) Non-PPIs
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ujtFE +Beds Vars +q Vars +Std Vars +GPO Vars +hFE +uhFE
Non PPIs
R2 0 0 0 0 0 .0002 .0012
PERCENTILES
10TH 2.97 2.97 2.97 2.97 2.97 2.96 2.99
25TH 4.91 4.91 4.91 4.91 4.91 4.92 4.93
50TH 6.03 6.03 6.03 6.03 6.03 6.01 5.98
75TH 6.74 6.74 6.74 6.74 6.74 6.74 6.74
90TH 7.48 7.48 7.48 7.48 7.48 7.46 7.46

PPIs
R2 0 .0008 .0109 .0109 .0118 .0511 .0807
PERCENTILES
10TH 6.77 6.77 6.78 6.78 6.78 6.82 6.83
25TH 7.02 7.02 7.02 7.02 7.02 7.04 7.04
50TH 7.25 7.25 7.25 7.25 7.25 7.23 7.25
75TH 7.39 7.39 7.39 7.39 7.39 7.38 7.350
90TH 7.60 7.60 7.60 7.60 7.60 7.58 7.57
Notes: Selected percentiles of the distribution of residual (log) prices after controlling for brand-year fixed effects and
various covariate sets Xht; R

2 of the regression for that covariate set (net of the R2 for the specification with only
brand-year fixed effects) also reported. Column (1) controls for brand-year effects only; column (2) adds hospital and system
bed size to the specification; column (3) adds hospital and system purchase volume; column (4) adds standardization
measures; column (5) adds GPO variables; column (6) replaces all of the previous hospital covariates with hospital fixed
effects; and the final column (7) includes hospital-category fixed effects.

fully standardized, while 19 (14) percent of non-PPIs (PPIs) are “almost” standardized.27

27There is dramatic variation across product categories in the number of available brands and vendors;
accordingly, some categories have much higher standardization rates than others. Isolation gowns have
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For non-PPIs, there is no statistically significant association between standardization and

price; for PPIs, full standardization is associated with a statistically significant 5.7 percent

decrease in price. In Appendix Table A3, we see that this is entirely driven by a large

negative association between price and full standardization for patellar knee prostheses. On

balance, we find limited evidence that restrictive choice sets are associated with lower prices;

associations are negative and significant in two categories (patellar knees and trocars) and

positive and significant in two categories (allografts and ablation/mapping catheters).

Finally, the results on hospital and system size may obscure other opportunities for

hospitals to bargain collectively. Conditional on hospital/system size, hospitals may vary in

their use of group purchasing organization services or their membership in other purchasing

coalitions. We have one proxy for this behavior in the form of the GPO membership variable

reported in the AHA surveys. As shown in Appendix Table A4, about 94 percent of sample

hospitals report some GPO membership. It is unclear whether the remaining 6 percent are

truly not using GPO services, or whether this is simply measurement error. Given this

ambiguity, we focus on two variables – a dummy for any GPO reported, and a dummy

for reporting use of one of the top GPOs (MedAssets, Novation, Premier, UHC, VHA,

and Vizient).28 Reporting any GPO membership is associated with an insignificant -0.8

percent decrease in price for non-PPIs, an insignificant 2.9 percent increase in price for

PPIs. However, conditional on reporting any GPO membership, membership in a large

GPO is associated with 1-2 percent higher prices for both non-PPIs and PPIs.29 These

results reinforce our finding of limited benefits of purchaser size, contrary to conventional

wisdom.

To put these results in perspective, the table at the bottom of Figure 2 reports selected

percentiles of the distribution of residual (log) prices after controlling for brand-year fixed

effects and various covariate sets Xht; it also reports the R2 of the regression for that covariate

set (net of the R2 for the specification with only brand-year fixed effects). Briefly, although

we document above that there are several factors that have significant effects on medical

supply prices, they have little explanatory power. The interquartile and interdecile ranges

of the residuals are remarkably stable across specifications (1)-(5). Similarly, there is no

detectable effect of hospital covariates on the R2 of price for non-PPIs (precision shown

our highest standardization rate among non-PPIs, at 52 percent full standardization and 83 percent al-
most standardization. Within PPIs, patellar knees are 7 percent fully standardized and 30 percent almost
standardized.

28Prior to 2015, VHA and UHC jointly owned Novation; in 2015, they merged and rebranded under the
name Vizient.

29For individual product categories, Appendix Table A3 shows evidence of statistically significantly higher
prices for large GPO members in liquid adhesives, isolation gowns, ablation/mapping catheters, and patellar
knees; and of statistically significantly lower prices for surgical gloves and linen underpads.
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to the fourth decimal point); all hospital covariates increase R2 by only 0.012 for PPIs.30

Moving from hospital covariates to hospital fixed effects decreases the residual dispersion

slightly, and increases the (net) adjusted R2 to 0.0002 for non-PPIs, 0.0511 for PPIs. We see

the most dramatic effects when we add hospital-category fixed effects: comparing column

(7) to column (5), the interquartile range decreases by 1 percent for non-PPIs and by 16

percent for PPIs. These patterns support the (somewhat obvious) notion that there are

many unobserved factors that vary across hospitals and that impact prices – e.g., physician

training, relationships with the device industry, practice style, and management, to name

just a few. It is somewhat more striking that the variation within hospital across product

category is approximately as important as the variation across hospitals; that is, given the

siloed nature of hospital purchasing, those unobserved factors do not bear out equally across

purchasing entities within the hospital.

In sum, we document that hospital characteristics account for little of the observed

variation in prices of medical devices; moreover, hospitals’ success in bargaining varies both

across product categories and across brands within product categories. We propose that a

model that incorporates heterogeneity in preferences and bargaining power across hospital-

brand pairs will do a better job of explaining the variation in our data given observed

consideration sets; we then go further to explore the roles of search and contracting frictions.

For the sake of expediency, we rely on the predictions of Nash-in-Nash bargaining to estimate

supply and demand parameters, as detailed in the following Section. However, we note

that this model will not incorporate any potential benefits of strategic exclusion (Ho and

Lee 2018).31 We consider the role of standardization to be an important topic for further

research.

3 Model

We model hospital consideration set formation and demand decisions in a framework with

negotiated prices. We assume hospital demand is derived from the preferences of its staff and

the needs of its patient population. First, those involved in hospital purchasing add brands to

the consideration set given their beliefs about brand quality and bargaining parameters, and

30Note that non-PPIs are a very heterogeneous category, so the model with (UMDNS-specific) brand-year
fixed effects has an adjusted R2 of 0.99. The analogous R2 is only 0.7 for the smaller set of less heterogeneous
PPIs.

31In Appendix D, we more directly consider the consideration set stability predictions of the Nash-in-
Nash with Threat of Replacement model, using our estimated supply and demand parameters and alternative
assumptions about hospitals’ quality expectations and the level of product at which search takes place. This
exercise provides evidence that it would be difficult to rationalize small observed consideration sets solely by
strategic exclusion.
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given the search and contracting frictions associated with adding brands to the consideration

set. Upon termination of search, the hospital and vendor negotiate prices for each brand

in the (endogenous) consideration set. Finally, conditional on the consideration set and

negotiated prices, the hospital purchases a brand for each use case from that set according

to its demand function. The timing and notation are as follows:

1. Hospital h has ex ante beliefs regarding brand j and time t defined by (all parameters

known unless specified):

Preferences θh + θjt + θv(j),hrr(h) + ξojht + ξujht (unknown ξujht)

Costs of production/distribution Cj(qjh; γ)

Bargaining
βjt
βh
ηjht (unknown ηjht)

Search/contracting costs scjht = Xsc
jhtψ + νjht

2. Hospital consideration set Jht determined and {ξujht}, {ηjht} learned via search/contracting

process.

3. Contract prices pjht(mcj,Jht, θjht, βjht) determined.

4. Quantities qjht(Jht, pjht, θjht) demanded.

Below, we describe each step of the search-bargaining-demand model, in reverse order of

model timing.

3.1 Demand model

The utility of brand j ∈ J = {1, ..., J} for use case i (often a doctor/patient combination,

for implantable medical devices) at hospital h is

uijht = δjht + εijht. (1)

The use-specific i.i.d. unobservable εijht = εight + (1−λg)εijht is the random coefficients rep-

resentation (from Cardell 1997) of the nested logit model where εight is a random component

common to all goods in group g; and εijht is the standard type I extreme value error term

(with scale normalized to one). As a nesting parameter λg ∈ [0, 1] approaches 1, there is

more substitution among brands within group g than to the outside good and other brands

outside g.
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The mean utility across use cases is specified as

δjht = θh + θjt + θv(j),hrr(h) − θppjht + ξojht + ξujht, (2)

where θh+θjt are hospital and brand-time specific dummy variables and their utility weights,

θv(j),hrr(h) is a dummy for each vendor-region pair and its utility weight (to account for

regional variation in vendors’ sales and marketing activity), θppjht is the negotiated price

for pair hj and its utility weight, and ξojht + ξujht is a hospital-brand specific unobservable

preference heterogeneity term. The non-standard element here is that this model admits the

possibility that the hospital observes a nonzero ξojht before the consideration set is formed.

This induces the selection problem discussed intuitively in the industry detail section. We

provide the details of our method for addressing it in the identification and estimation section

below.

Given contracts for a set of brands Jht and flow of choice opportunities Mht, we assume

the hospital chooses the brand in the consideration set that maximizes utility for each use

opportunity, so that quantities demanded are given by:

qjht = MhtPr[uijht > uikht,∀k ∈ Jht] = Mht
e
δjht
1−λg∑

k∈g e
δkht
1−λg

(∑
k∈g e

δkht
1−λg

)1−λg

1 +
∑

g

(∑
k∈g e

δkht
1−λg

)1−λg , (3)

and hospital surplus across all contracted brands is given by:

πh(Jh) = Mht
1

θp
ln

1 +
∑
g

(∑
k∈g

e
δkht
1−λg

)1−λg
 . (4)

3.1.1 Demand identification and estimation

We follow the procedure in Berry (1994), setting choice probabilities implied by the demand

model equal to market shares observed in the data, and inverting the system to yield a linear

correspondence between a function of market shares and the mean utility for each brand:

ln(sjht/s0ht)− λg ln(sjht/sght) = δjht = θh + θjt + θv(j),hrr(h) − θppjht + ξojht + ξujht, (5)

leading to the linear estimation problem ln(sjht/s0ht) = λg ln(sjht/sght)+θh+θjt+θv(j),hrr(h)−
θppjht + ξojht + ξujht.

Estimating this equation faces two well-known challenges in that theory suggests both
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ln(sjht/sght) and pjht are correlated with the unobservable term ξojht + ξujht. We take an

instrumental variables approach to solving this identification problem. For ln(sjht/sght), we

follow much of the literature (e.g., Berry et al. 1995; Berry and Waldfogel 1999) in using

choice set size as instruments, which leverages the fact that more variety will on average

affect substitution independent of the individual brand’s unobservable. Due to our concern

about endogeneity of the choice set construction process, we use predicted choice set size

from our first stage regression of choice set composition on controls and instruments to form

the instruments (|̂Jght|, |̂Jght|
2

, ln(|̂Jght|)).
For pjht, we build on the results in Grennan and Swanson (2019) that show how ac-

cess to benchmarking information generates a price shock that varies across brand-hospital

combinations based on their place in the pre-information price and quantity distributions.32

Specifically, we instrument for price with the full set of interactions between variables in-

dicating: whether benchmarking information is available for that brand at that hospital

at that time 1{postjht}; the hospital-brand’s quartile of quantity purchased, relative to all

other hospital-brands in the year before information is available (e.g., 1{qjht>p75(q)}); and

the hospital-brand’s quintile of price relative to all other hospitals purchasing the relevant

brand in the year before information is available (e.g., 1{pjht>p80(p)}). We also follow Grennan

(2013) in instrumenting for the price of each hospital-brand-year using the price of the same

hospital-brand in the previous year.33

We also wish to correct for a specific kind of sample selection problem that could be

introduced if the consideration set formation process is somehow correlated with demand

unobservables. One version of such a problem would be if the hospital observes a nonzero ξojht
before the consideration set is formed, and the search and contracting processes are directed

by this information. In this case, the brands in the consideration set may specifically be

brands that are preferred (in expectation) by the hospital. This would tend to introduce a

positive bias in the estimated fixed effects θh + θjt.

We address this problem by introducing a control function for E[ξojht|j ∈ Jht] as in Petrin

and Train (2009) and Attanasio et al. (2008). Specifically, suppose that the search process

can be approximated by the following reduced form:

1(j ∈ Jht) := 1(φh + φjt + φv(j),hrr(h) + Zs
jhtφ

Z + εsjht > 0) (6)

where Zs
jht is a set of instruments that impact search but not demand, and εs is a shock to

32Grennan and Swanson (2019) found evidence that access to benchmarking leads to price decreases for
a variety of product categories, particularly for hospitals and brands that involved high prices and large
purchase quantities prior to benchmarking access.

33In the demand equation, we also control for whether the brand was included in the hospital’s consider-
ation set in the previous year.
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the search process which may in general be correlated with the demand unobservable. Our

approach then takes the following steps: (1) we estimate the reduced form search model

as a linear probability model, regressing 1(j ∈ Jht) on the instruments Zs
jht and controls;

and (2) we include the control function f( ̂Pr(j ∈ Jht)) as a regressor in the demand model.

In our preferred specification, we set f(.) as a cubic polynomial in (1 − ̂Pr(j ∈ Jht)).34

This specification of the control function has the intuitive property that it is small when

the instruments push a brand into the consideration set with probability one. Under the

story of search directed based on knowledge of the unobservable ξojht, this generates a clear

prediction that the coefficient on the control function will be zero if no selection is present,

and it will be positive and correct the fixed effect distribution downward if there is a positive

correlation between ξojht and εs.35

As discussed in Section 2.3, the unique data on all consumable supply purchases across

numerous product categories in each hospital, paired with the phenomenon of many vendors

supplying product categories in disparate “verticals” across the hospital, provides potential

instruments Zs
jht based on the exposure of the hospital to the vendor of brand j in verticals

which are unrelated from a demand perspective. The set of instruments we currently employ

for this purpose are vendor-hospital exposure – the total spend observed for the given hospital

on the current brand’s vendor in dissimilar categories in the same year, relative to all spend

by that hospital in those dissimilar categories. We define “dissimilar” categories based on

the UMDNS code hierarchy previously discussed. Letting Pu be the set of UMDNS code u’s

“parents,” a category u′ is in the “dissimilar” set Du if u and u′ share at most one parent:

|Pu ∩ Pu′| ≤ 1. In the example hierarchy in Figure 1, the green highlighted categories

are “similar” to coronary drug-eluting stents (e.g., bone grafts) and the yellow highlighted

categories are “dissimilar” (e.g., tracheal tubes).

Given the dissimilar set Du, we construct the exposure variable Z̃s
ujht as:

Z̃s
ujht =

∑
u′∈Du Eu′hv(j)t∑

u′∈Du
∑

v′ Eu′hv′t

where Euvht is total expenditure by hospital h on vendor v’s brands in UMDNS code u at

time t. The denominator is the hospital’s total purchasing in the dissimilar categories.

To illustrate the power of this identification strategy, Figure 3 shows the results of a

34Results are similar with linear and quadratic control functions.
35See Appendix B for further discussion and Monte Carlo simulation results on the performance of this

estimator.

22



regression within each top UMDNS code u:

1(j ∈ Juht) = θujt + θuh + θv(j),hrr(h) + βnear1{Z̃s,nearujht >p50(Z̃s,near)} + βfar1{Z̃s,farujht >p50(Z̃s,far)}.

In this specification, Z̃s,far
ujht is our focal instrument: the exposure of hospital h to brand j’s

vendor at time t in dissimilar categories. We control for θujt in order to focus on variation in

exposure within brand-time. We also control for Z̃s,near
ujht : exposure of h to j’s vendor in sim-

ilar categories; we argue that exposure to vendors in similar categories is more likely than

exposure to vendors in dissimilar categories to be driven by correlated preferences across

verticals. For each Z̃s variable, we examine the effect of above-median exposure (as a rough

proxy for “high” exposure) of the hospital-vendor pair in other categories. Thus, our coeffi-

cient of interest βfar captures the effect of above-median exposure to a given brand’s vendor

in dissimilar categories on a hospital’s tendency to include that brand in its consideration set.

The solid markers show the results of the specification when we control only for brand-time

fixed effects. The hollow markers show the results of our preferred specification, in which we

also include hospital fixed effects and vendor-HRR fixed effects. The former remove variation

driven by a given hospital’s overall preference for variety; the latter absorb variation driven

by regional sales and marketing activity of specific vendors.

Figure 3 plots the estimated coefficients β̂far and corresponding 95 percent confidence in-

tervals, with and without hospital and vendor-HRR fixed effects, for each of our top UMDNS

codes.36 In each panel, the top estimates (blue circles) are for non-PPIs; the bottom (red

triangles) for PPIs. In panel (a), we show results for the 70 (of the original 100) top spend-

ing product categories that were not deemed overly broad (e.g., “office supplies”) and did

not have missing or inconsistent quantity data (see Appendix A). In panel (b), we show

results for the final 19 product categories in our analytic sample; these categories are re-

quired to have a powerful exposure first stage in our preferred specification and must also

be sufficiently small as to not run up against a memory constraint in estimation.

Within both product classes, we see positive estimated effects of high exposure on brand

adoption for the vast majority of product categories. In many cases, these effects are also

statistically significant within category in the preferred fixed effects specification (hollow

markers).37 The effect of including hospital and HRR-vendor fixed effects is usually to

attenuate the estimate of βfar slightly. The fact that they are not dramatically different

36In order to facilitate comparison across widely varying UMDNS codes with different choice set sizes, we
normalize each coefficient by dividing through by the mean probability of consideration set inclusion across
hospital-brand-years in the UMDNS code.

37Note that the few product categories with insignificant estimates of β̂far in panel (b) do by definition
have a powerful first stage in the preferred first stage selection equation described below, which leverages
richer variation in Z̃s,far than shown here.
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Figure 3: Reduced Form Evidence of Exposure and Consideration Set Inclusion

(a) All UMDNS Codes
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(b) Final UMDNS Codes
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suggests that most of our identifying variation is coming from changes over time as cross-

market mergers, new product introductions, etc. move around Z̃s,far.

Taken together, these results suggest that exposure to vendors in dissimilar categories

has a large positive effect on inclusion of those vendors’ brands in the consideration set for

the focal category. This identification strategy leads us to the demand model we take to the
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data:

ln(sjht/s0ht) = λ ln(sjht/sght) + θh + θjt + θv(j)hrr(h) − θppjht + θff(Zs
jhtφ̂

Z) + ξujht, (7)

which is a linear instrumental variables specification, where we instrument for price and

the nested logit term as described above, and φ̂Z is obtained from a first stage regression

of 1(j ∈ Jht) on excluded instruments and controls. Our preferred specification lets our

excluded instruments in the “exposure” first stage Zs
jht be a series of dummy variables for

quintiles of Z̃s,far, and we also control for quintiles of Z̃s,near in both the exposure first stage

and in the demand model.38 Finally, f(.) is a cubic polynomial in ̂Pr(j ∈ Jht).

3.2 Supply model of negotiated prices

In the business-to-business market for a given hospital supply, the price for a given brand
is buyer-specific. We assume that prices are determined between the hospital and the set
of vendors with which it contracts as a Nash Equilibrium of simultaneous bilateral Nash
Bargaining problems. Each price maximizes the bilateral Nash product, taking other prices
as given (t subscripts omitted for brevity):

phj = arg max (qhjphj − Cj(qhj))
bj(h) (πh(Jh)− πh(Jh \ j))bh(j)

=
Cj(qhj)

qhj
+

bj(h)

bj(h) + bh(j)

1 +
∂qhj
∂phj

phj − Cj(qhj)
qhj

qhj

 πh(Jh)− πh(Jh \ j)
qhj

+ phj −
Cj(qhj)

qhj

(8)

where Cj(qhj) is a function capturing the costs of manufacturing and distributing quantity

qhj of brand j to hospital h. The terms bj(h) and bh(j) are relative bargaining ability

weights that capture the extent to which the optimal price depends on vendor profits vs.

the expected additional hospital surplus in the case that a contract is agreed to for brand j:

AV CS ≡ πh(Jh)−πh(Jh\j)
qhj

. All the terms in this pricing equation are assumed to be known to

all market participants at the time of bargaining.

3.2.1 Supply identification and estimation

We jointly estimate the above (linearized) demand model with the control function correction

term and the supply model using a generalized method of moments approach. This enables

us to simultaneously recover the demand parameters θ, marginal costs, and mean relative

bargaining weights.

We model marginal costs as a fraction of the price charged to the hospital paying the min-

38We have also tried linear, quadratic, log, and alternative quantile functions of Z̃s,far. We chose the
quintiles specification as having the most powerful first stage.
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imum price for each brand. This specification balances the challenges of estimating marginal

costs in a market with large markups (Grennan 2013) and absent product characteristics

data within our product categories, with the desire to allow for flexible marginal costs across

brands within a category that may indeed be quite different from one another. We interpret

the estimated parameter as the average minimum margin in each product category.39,40

mcj := γmin
ht

pjht. (9)

This specification follows the approach in Grennan (2013, 2014) by assuming no unobservable

term in marginal costs, and instead loads the supply side unobservable in the bargaining

parameters. We prefer this specification as our prior is that, in our empirical setting, marginal

costs are less likely to vary across hospitals and time in unobservable ways than bargaining

outcomes. Intuitively, relative bargaining abilities for each brand-hospital pair are identified

by the slope with which price changes as the added value of the brand changes, and marginal

costs are identified as the intercepts in this relationship as added value approaches zero.

We think of the bargaining parameters themselves as representing characteristics of the

hospital and brand that enter the negotiation, but are separate from the economic factors

that define total surplus: cost, willingness-to-pay, and disagreement points. We model the

relative ratio of the two bargaining parameters by:

bjt(h)

bht(j)
:= e

βjt−βh−1{Infojh}X
pq
jhβ

Info,pq
jh +ηjht . (10)

Here βjt and βh represent brand-year and hospital fixed effects, respectively. The term

1{Infojh}X
pq
jhβ

Info,pq
jh represents whether the hospital has access to benchmarking information

on the brand 1{Infojh} and where the hospital was in the price and quantity distributions

relative to other hospitals prior to having that information Xpq
jh . Our inclusion of the bench-

marking information regressors relates directly to our use of this variation in identifying

demand, and is intended to capture the finding from Grennan and Swanson (2019) that

benchmarking appears to solve an asymmetric information problem in which hospitals may

39In unreported results, we analyze robustness of this assumption. We have tried estimating models with
less flexibility across brands, which tend to push marginal costs towards zero and which we believe overstate
margins and understate true cost heterogeneity. Models using product characteristics mcj = Xmc

j γ seem to
work better in the product categories for which they are available, but the potential richness of the relevant
characteristics varies widely across categories, and combined with the size of the vendor and product spaces,
collecting such data from manufacturer catalogs across all product categories has proven overwhelming. We
provide estimates of such a model for selected categories where we have collected such data.

40In ongoing work, we are seeking to incorporate potential returns to scale in distribution at the product-
and vendor-hospital level.
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be uncertain about a brand’s supplier’s negotiator type.41 Finally, ηjht is the econometric

unobservable term for the supply side moments.

In order to recover the supply parameters, we rearrange the supply equation and take

logs to obtain the following expression:

ln(ηjht) = −βj + βh + 1{Infojh}X
pq
jhβ

Info,pq
jh + ln(pjht −mcj)

− ln

((
1 +

∂qjht
∂pjht

pjht −mcj
qjht

)
πh(Jht)− πh(Jht \ j)

qjht

)
.

In this expression, prices pjht, product characteristics Xmc
j (= minht pjht), and demand ob-

servables Xd
jht enter as data, and we condition out the bargaining regressors. That leaves

only the marginal cost parameter γ to be recovered from this moment equation, which is

identified under the assumption E
[
ln(ηjht)Z

B
jht

]
= 0. For our supply side instrument we use

the optimal instrument (Hansen 1982): ZB := ∂ ln(η)
∂γ

.

We combine the supply and demand moments in a GMM estimator. We estimate demand

and supply jointly, imposing supply optimality constraints:

mcj ∈ [0, pjht], (11)

and
∂sjht
∂pjht

pjht −mcj
sjht

∈ [−1, 0]. (12)

3.3 Search/contracting model

The demand and pricing models specified thus far are based upon a consideration set Jht
that has been determined by hospital h’s search over the set of all possible brands available at

a point in time Jt. The search process we specify is intended to accommodate the following

features: (1) Allowing for various sources of heterogeneity across brands in (beliefs about)

preferences θhj; bargaining βj, βh; and search costs schj seems important for fitting the data

and intuitions about agent information and behavior. (2) Hospitals make repeated purchases

from Jht, so the composition of Jht matters (in a similar vein to optimal retailer assortment

or portfolio choice problems). (3) Unless the full brand set Jt is small, the computability

of an (optimal) search model relies on the ordering of brands not changing (too much) with

the size/composition of the inframarginal consideration set Jht.
41This seems like the most natural way to map asymmetric information about bargaining parameters

into the Nash-in-Nash framework. Providing noncooperative foundations of such a model, however, is not
straightforward, and would presumably involve extending the ideas in Collard-Wexler et al. (2017) to asym-
metric information bargaining as in Rubinstein (1985).
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One cannot satisfy all of [1− 3] simultaneously and also meet the assumptions required

for the algorithms commonly applied to simplify dynamic search problems (e.g. Chade and

Smith 2006; Weitzman 1979). Our approach is to instead construct moment inequalities

based on weak search assumptions. In this setting, we find that very weak assumptions

are still informative. Moreover, adding inequalities based on stronger assumptions generates

identical results to a full search model consistent with those assumptions (results varying

the strength of the bounds assumptions available by request). Importantly, the approach is

computationally tractable because our particular bounds can be computed prior to search

cost estimation. Our bounds can also be constructed from inequalities consistent with both

simultaneous and sequential search models.

3.3.1 Estimating the distribution of unobservables for counterfactual product-

hospital combinations

In order to infer search costs (and for later counterfactuals), we need to consider demand

for brand-hospital combinations that we do not observe in the data. Our control function

selection correction allowed us to estimate the unconditional brand and hospital fixed effect

distributions.42 However, we still need an estimate of brand-hospital-specific taste shocks for

these k ∈ Jt \Jht. The reasoning behind the selection correction was that the distribution of

demand unobservables ξjht = ξojht+ ξujht is expected to be shifted upward for j ∈ Jht, relative

to the unconditional distribution, so these cannot be used directly.

However, we observe a close approximation to the unconditional distribution of ξjht in the

demand realizations jht with ̂Pr(j ∈ Jht) ≈ 1. Intuitively, hospitals with ̂Pr(j ∈ Jht) ≈ 1

were “forced” to purchase brand j due to plausibly exogenous variation in exposure to those

brands’ vendors. To leverage this fact, we use the following procedure:

1. Estimate a piecewise uniform distribution guc(ξ) using the demand residuals from the

sample jht| ̂Pr(j ∈ Jht) > 0.8. ĝuc(ξ) is the estimated unconditional distribution of

ξ.43

2. Using the same piecewise uniform functional form and interval cutoffs from (1), es-

timate gc,in(ξ) using the demand residuals for all j ∈ Jht. ĝc,in(ξ) is the estimated

conditional distribution of ξ for hospital-brand-years with positive purchase.

42Similar to work in teacher “value added”, we apply Bayesian shrinkage procedures to the parameters
θjt, θh, βjt, βh to account for the fact that some are estimated from very few observations.

43In our current implementation, we divide the ξjht| ̂Pr(j ∈ Jht) > 0.8 into quintiles, and assume the
functional form of a uniform distribution within each quintile, bounded at the ends by the min and max
unobservables in the set. Assuming that the conditional and unconditional distributions of ξ share the same
functional form, estimating the conditional distribution of ξ amounts to estimating the probability density
for each of these same five intervals.
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3. Infer the discrete distribution of ξ for hospital-brand-years with zero purchase gc,out(ξ)

using the law of total probability: guc(ξ) = (1 − Pr(j ∈ Jht)) ∗ gc,out(ξ) + Pr(j ∈
Jht) ∗ gc,in(ξ).

To illustrate the power of our “forcing” variables Zs, and to demonstrate how much

support is available for estimating the unconditional distribution of ξ, Figure 4 plots the

distributions of ̂Pr(j ∈ Jht) for all jht and for jht|1(j ∈ Jht). The main points to take

away from this plot are (1) that the distribution of ̂Pr(j ∈ Jht) is clearly shifted upward for

realizations with qjht > 0; and (2) that, in each included product category, there is a signif-

icant mass of observations with ̂Pr(j ∈ Jht) ≈ 1 for which we observe demand realizations,

enabling us to estimate the unconditional distributions of ξ.

Figure 4: Distributions of predicted consideration set inclusion propensities
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Notes: Distributions of ̂Pr(j ∈ Jht) for all jht such that qjht > 0 (hollow markers) and for all possible jht (solid markers;
given small observed consideration sets, the vast majority of these have qjht = 0). Markers represent distribution means. Bars

represent 1st − 99th percentiles. 25th and 75th percentile tick marks shown as well.

3.3.2 Search identification and estimation

We first consider how brands j ∈ Jht provide upper bounds on search costs. Assuming

that the set of firms purchased from in the data must be a subset of the firms searched,

Jht ⊆ J search
ht , it follows that any j ∈ Jht must have been worth paying search costs for at

some stage during the search process. When brands are all substitutes for one another, the

29



weakest such assumption comes from the value of j versus the outside good:

Eξ,η[AVjht(θ, β, γ; ∅ ∪ j)] > scjht ∀j ∈ Jht. (13)

This assumption is weak in that it provides a greater value than adding j to any other set,

and also in that it is potentially consistent with both simultaneous and sequential models of

search (and in the case of sequential, any order of search).

Analogously, brands k ∈ Jt \ Jht provide lower bounds on search costs. Assuming there

is at least one brand k that a given hospital has not searched, k ∈ Jt \ J search
ht , then it

must not have been worth paying search costs for this brand at any time during the search

process. For substitutes, the weakest such assumption comes from value of k as part of the

full possible choice set:

Eξ,η[AVkht(θ, β, γ;Jt)] < sckht ∀k ∈ Jt \ J search
ht . (14)

Again, this assumption is weak in that it provides a smaller value than adding k to any other

set, and also in that it is potentially consistent with both simultaneous and sequential models

of search (and in the case of sequential, any order of search). To account for the possibility

that J search
ht may be much larger than Jht (and maybe approaching Jt), we further take the

minimum of the bounds above over all potential k ∈ Jt \ Jht.
For both bounds, estimating AVjht(θ, β, γ; ∅∪ j) involves computing counterfactual equi-

librium prices and quantities for the respective counterfactual choice sets (for each hospital-

year). We do this using our estimated demand (θ) and supply (β, γ) parameters. We then

construct distributions of the demand unobservables for brands both in and out of the ob-

served consideration sets. In our current implementation, we use estimated ξjht and ηjht

for any j ∈ Jht and random draws from the conditional ξ distribution computed above and

unconditional η distribution from the parameter estimates for k ∈ Jt \ Jht.44

We use these bounds and parameterize search costs by:

scjht = ψ0 + ψt−11{j∈Jht−1} + ψfarZfar
jht + νjht (15)

where ψ0 estimates the mean search/contracting cost (in units of dollars of expected surplus

44Note our current implementation computes search costs (and later counterfactuals) as if the entire
ξ = ξo + ξu is known prior to contracting. We are currently working on parametric assumptions that
would allow us to deconvolute these two sources of error, as well as less parametric robustness to different
assumptions on the distribution of ξo (similar to Eizenberg (2014) in the context of firm entry). For example,
for search costs estimation, the bounds can be weakened further by assuming the hospital has extreme beliefs
in the portion of the demand unobservable it knows prior to search, e.g. ξojht = maxht ξjht for j ∈ Jht and
ξokht = minht ξkht for k 6∈ Jht.
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per patient) for a product/vendor that is new to the hospital, ψt−1 and ψfar allow for lower

search costs for brands sourced by the hospital in the previous year or in other product

categories in the current year, respectively. We implement the constrained optimization

approach to computing the identified sets for this moment inequalities estimator described

in Dong et al. (2017).

4 Quantifying Sources of Price Dispersion

4.1 Estimated parameters: demand, pricing, and search

Table 2 shows the estimated parameters from our demand and pricing models. The price

means and coefficients of variation are shown for each product category for context. The first

parameters of interest are the demand parameters. We summarize the estimated selection

correction as the implied change in the expected value of the residual for a one standard

deviation increase in 1 − ̂Pr[j ∈ Jh]. The positive estimates indicate positive selection on

unobservable demand – the less likely a product is to be in the choice set based on our

measure of exposure in far away product categories, the more likely the hospital has a high

unobservable taste draw ξojht for that brand.

There is a wide range over the estimated nesting parameter λ, which captures substitution

to the outside good (recall λ is an approximate measure of within-category correlation in

substitution, with 0 characterizing the plain logit model, and 1 implying no substitution

to the outside good). The class average λ is similar for PPIs (0.28) and non-PPIs (0.33).

However, class averages conceal a great deal of heterogeneity, reflecting variation across

categories in the availability and closeness of the substitute treatment opportunities that

comprise the outside option.

The price coefficient θp (that scales dollars into logit utils, and recall the extreme value

type 1 normalization fixes the standard deviation of the error to 1 − λ ∗ (π/
√

6 ∼ 1.28))

is rather small across most categories, indicating little price sensitivity in product usage

patterns in general. There are, however, large differences in price sensitivity across product

categories. PPI usage is more than an order of magnitude less price-sensitive than non-

PPIs (on both a level and percent change basis). This is consistent with what we would

expect, given the relative amounts of brand-manufacturer-specific branding, and the relative

importance of PPIs and non-PPIs in determining procedural outcomes. We find it reassuring

that our fairly parsimonious demand model is able to empirically identify this anticipated

feature of physician preference items via substitution patterns revealed by the data.

The other output of the demand estimation reported here is the consumer surplus com-
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Table 2: Demand and Pricing Parameter Estimates

p
∂E[ξ]
∂σ

λ θp∗1, 000 AV CS B p−mc
p

µ σ
µ

µ σ
µ

µ σ
µ

µ σ
µ

Other Medical/Surgical Supplies (Non-PPIs)
Linen Underpads $0.30 0.08 1.11 0.48 -16.243 $51 0.15 0.00 0.47 0.22 0.31
Isolation Gowns $0.45 0.08 0.44 0.18 -16.461 $69 0.06 0.00 0.43 0.18 0.30
Surgical Gloves $0.86 0.07 0.94 0.29 -14.532 $179 0.02 0.00 0.35 0.25 0.26
Pulse Oximeter Probes $10 0.18 -0.33 0.55 -1.997 $427 0.14 0.15 0.58 0.33 0.34
Liquid Adhesives $17 0.12 0.81 0.55 -5.721 $117 0.16 0.08 0.50 0.68 0.32
Pneumatic Compression Cuffs $19 0.11 0.49 0.64 -7.353 $83 0.21 0.17 0.44 0.47 0.29
Trocars $35 0.21 1.02 0.28 -6.267 $107 0.10 0.13 0.62 0.37 0.39
GI Staples $133 0.18 0.31 0.23 -0.299 $3,036 0.03 0.05 0.19 1.00 0.00
Linear Staplers $142 0.14 0.35 0.33 -1.029 $593 0.07 0.24 0.15 1.00 0.00
Orthopedic Fixation Systems $396 0.20 1.31 0.09 -0.801 $886 0.09 0.18 0.45 0.59 0.27
Hemostatic Media $447 0.06 0.34 0.46 -0.898 $670 0.17 0.10 0.36 0.22 0.26
Electrosurgical Forceps $523 0.20 1.69 0.35 -0.237 $3,036 0.07 0.13 0.45 0.50 0.25
Ablation/Mapping Cath. $880 0.14 0.30 0.06 -0.297 $2,792 0.05 0.11 0.41 0.45 0.27
Allografts $956 0.14 0.68 0.00 -0.230 $4,200 0.05 0.10 0.45 0.31 0.32
Bone Grafts $2,691 0.13 0.54 0.43 -0.108 $4,569 0.07 0.11 0.47 0.41 0.34
Average(15) $417 0.14 0.67 0.33 -4.831 $1,388 0.10 0.10 0.42 0.47 0.26
Physician Preference Items (PPIs)
Patellar Knee Prosth. $414 0.24 0.61 0.65 -0.420 $3,402 0.28 0.22 0.62 0.38 0.36
Acetabular Hip Prosth. $1,152 0.23 2.04 0.00 -0.154 $5,581 0.07 0.21 0.24 1.00 0.00
Drug Eluting Stents $1,471 0.06 0.47 0.44 -0.168 $2,853 0.15 0.39 0.11 0.98 0.00
Humeral Shoulder Prosth. $2,173 0.21 1.21 0.04 -0.202 $3,663 0.16 0.24 0.46 0.51 0.28
Average(4) $1,303 0.18 1.08 0.28 -0.236 $3,875 0.16 0.27 0.36 0.72 0.16

ponent of added value – the additional surplus accruing to the physician-patient-hospital for

having access to brand j – implied by the estimated utility model. In part due to the low

price sensitivity of demand, these are relatively large in dollar value across all categories,

but increasingly so in the preference item categories. Coefficients of variation of the added

value range from 0.16 in PPIs to 0.10 in non-PPIs – slightly smaller than price coefficients

of variation. These AV CS estimates are the key input from the demand estimation that,

combined with the granular price data, allows estimation of the bargaining model.

The results for the bargaining model are shown for the last four columns. The bargaining

model provides estimates of marginal costs, which in turn define markups; and bargaining

parameters, which rationalize the split of the total added value AV TS := AV CS + p − mc
between device vendors and hospitals, conditional on the consideration set. The bargaining

parameters indicate that manufacturers of non-PPIs capture 10 percent of the total value

added up for negotiation on average, while PPIs capture more, 27 percent on average. These

parameters implicitly capture some of the unique agency relationships in the hospital supply

setting. Recall our assumption that the preferences estimated in the demand model are the

relevant preferences for measuring added value in the bargaining model. The bargaining

residual captures the relative weight put on vendor and hospital surplus to explain the price

variation as a function of added value variation. Thus, a smaller relative share to vendors

can be driven by the purchasing agents involved in negotiation perceiving brands as closer

32



substitutes than provider substitution patterns would indicate. In that light, one explanation

consistent with prior work on PPIs would be that the larger bargaining split is driven by the

greater ability/desire of physicians to transmit their preferences to purchasing (or conversely,

the inability of purchasing to move physician market share) for PPIs than for non-PPIs.

As expected given the large price dispersion documented, estimated markups are large in

most product categories, ranging from 18 percent of price in gowns to 100 in a few categories

with estimated marginal costs of zero. The combination of lower price sensitivity and higher

bargaining parameters leads to larger average markups of 72 percent in PPIs, vs. 47 percent

in non-PPIs.

4.2 Search costs and breadth of buyer-supplier relationships

In Section 4.3, we will further examine the contributions of search, bargaining, and demand

to the level and variation of markups. First, though, we consider the parameter estimates

of the search cost functions. Of particular interest are the mean search cost parameters,

but we also discuss the coefficients on our proxies for past contracting relationship ψt−1 and

current contracting relationship with the brand’s vendor across dissimilar product categories

ψfar. The latter coefficient speaks to one channel via which supplier breadth is argued to

potentially enhance welfare. Table 3 provides evidence on this matter.

Table 3: Determinants of Search/Contracting Costs

ψ0 ψfar ψt−1 Zs,far 1{t− 1}
µ σ µ σ

Other Medical/Surgical Supplies (Non-PPIs)
Linen Underpads [0.1, 0.0] [0.2, -0.1] [0.1, -0.1] 0.09 0.08 0.60 0.26
Isolation Gowns 0.9 -0.0 -0.2 0.08 0.07 0.60 0.29
Surgical Gloves 0.2 -0.0 -0.0 0.08 0.08 0.62 0.29
Pulse Oximeter Probes 0.6 -0.0 -0.0 0.04 0.03 0.48 0.29
Liquid Adhesives [0.4, 0.3] [0.2, -0.1] [0.0, -0.1] 0.05 0.06 0.53 0.32
Pneumatic Compression Cuffs 0.5 [0.2, -0.0] [0.0, -0.1] 0.07 0.06 0.59 0.29
Trocars 1.2 -0.0 -0.0 0.06 0.06 0.60 0.33
GI Staples 32.4 -1.0 -0.4 0.06 0.06 0.54 0.37
Linear Staplers 12.6 -0.3 -0.2 0.06 0.06 0.60 0.36
Orthopedic Fixation Systems 10.5 -0.0 -0.1 0.14 0.08 0.53 0.38
Hemostatic Media 63.7 -19.1 0.2 0.05 0.06 0.57 0.35
Electrosurgical Forceps 31.1 -0.0 -1.2 0.03 0.03 0.44 0.36
Ablation/Mapping Cath. 56.8 0.0 -0.0 0.03 0.03 0.58 0.37
Allografts 37.7 -0.0 -0.7 0.02 0.02 0.45 0.33
Bone Grafts 64.4 -0.1 -0.6 0.10 0.07 0.54 0.35
Average(15) [20.9, 20.8] [-1.3, -1.4] -0.2 0.06 0.06 0.55 0.33
Physician Preference Items (PPIs)
Patellar Knee Prosth. 3.3 -0.0 -0.0 0.07 0.06 0.62 0.35
Acetabular Hip Prosth. 29.0 -0.0 -0.2 0.09 0.07 0.54 0.39
Drug Eluting Stents 91.3 1.9 -2.2 0.04 0.03 0.54 0.35
Humeral Shoulder Prosth. 83.8 -0.0 -0.8 0.08 0.05 0.49 0.39
Average(4) 51.9 0.5 -0.8 0.07 0.05 0.55 0.37

For each product category, the first three columns of Table 3 report the search cost pa-
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rameter estimates, and the last four columns provide summary statistics (mean and standard

deviation) for the extent of purchasing persistence (1(qjh,t−1 > 0)) and breadth (Zs,far) to

facilitate understanding of the quantities involved. Parameters are point identified in most

cases.45 Looking at the category averages, search/contracting costs are meaningful, but not

overwhelming, averaging roughly 5 percent of price.46

It is difficult to tell directly from these parameter estimates the extent to which search/contracting

frictions vs. product differentiation are the driving force behind the large estimated markups

in these medical devices. Both seem to be nontrivial, but without an equilibrium model, it

is not clear how to assess their relative role. Relatedly and similarly, it is difficult to charac-

terize the relative contribution of demand versus bargaining heterogeneity in the observed

price dispersion across hospitals based on the parameter estimates alone. The next Section

computes several counterfactuals in order to shed further light on these issues.

4.3 Decomposing price variation

As a final exercise, we use our parameter estimates to examine various decompositions of

the prices observed in the data. If the price variation we document, and the market power

underlying estimated markups, are driven by true brand differentiation in quality (where

quality could either be vertical quality for the average use, or horizontal use-specific match

quality), then that has quite different welfare implications than physician-specific brand

preferences or search frictions that limit the choice set. To disentangle these factors, we

explore equilibrium prices and consumer surplus in several counterfactual scenarios.

First, to better understand the drivers of price variation across hospitals, we condition on

the observed choice sets in the data, but we counterfactually shut down heterogeneity across

hospitals in bargaining (Bjht =
βjt

βjt+
1
|H|

∑
h∈H βh/ηjht

) and demand (δjht = θjt + 1
|H|
∑

h∈H(θh +

θff(Zs
jht)+ξujht)−θppjht), each in turn. We then compute equilibrium prices (and quantities)

at these parameters, and recompute the coefficient of variation in price across hospitals

(within brand-year, focusing on the year 2013). This provides a measure of the extent to

which the price dispersion in the data is being driven by bargaining or demand, conditional

on the observed choice sets.

45The estimates here follow the approach of using estimated ξjht and drawing counterfactual ξkht from
the estimated distribution f(ξ|k 6∈ Jht). Parameter estimates for looser bounds using ξ = ξmax

min and also
different bounds more akin to the “stability” inequalities in Ghili (2018) available by request. For the loosest
bounds, most parameters are no longer point identified. Approaches to deconvoluting the distributions of ξo

and ξu are currently in progress.
46In our current implementation, the estimated effects of vendor exposure in other product categories and

presence in prior year’s choice set are small; however, we offer this with the caveat that these parameters are
especially sensitive to which moment inequalities we use. A primary area of ongoing work for this project is
to better understand how different inequalities, and greater flexibility, affect search cost estimates.
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In Table 4, the left panel repeats summary statistics from the data on choice set sizes and

prices for reference. The middle panel (columns 5-6) shows the proportion of price dispersion

(%σ
µ
) remaining after the counterfactuals just discussed – taking out price variation driven

by bargaining (p−σB) and preferences (p−σD), respectively. We find that in every product cat-

egory except one, variation in prices across hospitals in the observed data is driven (typically

much) more by variation in bargaining than by demand. This relative dominance of bar-

gaining variation is slightly stronger in non-PPIs, but varies more within our product classes

than across them; e.g., bargaining is far more important to price dispersion for surgical gloves

than for linen underpads among the non-PPIs, and more important for shoulder prostheses

than for drug-eluting stents among the PPIs. All of the categories show some covariance

between bargaining and demand estimates, with sum of the price variation explained by each

totaling more than the observed price variation in the data.

Table 4: Decomposing Variation in Prices and Markups

Decompose σ(p) Decrease Search Costs by Half

|Jh| p p−σB p−σD |J ch | p ∆CS(J ch ,Jh)
µ σ

µ
%σ
µ

%σ
µ

µ, qwJh
µ, qwJ c

h

Other Medical/Surgical Supplies (Non-PPIs)
Linen Underpads 2 $0.31 0.07 53.7 103.4 28 $0.29 $0.35 $48
Isolation Gowns 2 $0.47 0.10 10.5 99.3 9 $0.45 $0.91 $48
Surgical Gloves 10 $0.90 0.07 9.7 101.6 22 $0.76 $0.85 $47
Pulse Oximeter Probes 6 $9.92 0.22 16.9 102.2 30 $8.72 $64 $402
Liquid Adhesives 4 $19 0.10 49.6 113.7 20 $14 $22 $107
Pneumatic Compression Cuffs 3 $18 0.16 47.5 99.3 11 $15 $20 $71
Trocars 9 $33 0.21 5.0 100.2 35 $32 $37 $130
GI Staples 6 $145 0.16 16.0 104.8 23 $134 $137 $2,787
Linear Staplers 7 $154 0.11 33.2 109.7 27 $141 $151 $791
Orthopedic Fixation Systems 25 $410 0.22 0.9 100.0 27 $409 $392 $436
Hemostatic Media 4 $395 0.08 62.4 100.2 4 $390 $403 $164
Electrosurgical Forceps 10 $546 0.17 10.0 102.9 23 $519 $561 $2,366
Ablation/Mapping Cath. 22 $893 0.13 2.1 100.1 30 $891 $935 $1,977
Allografts 21 $1,003 0.15 2.0 100.0 113 $996 $1,318 $6,604
Bone Grafts 10 $2,683 0.16 8.2 102.1 16 $2,595 $2,244 $3,633
Average(15) 9 $421 0.14 21.8 102.6 28 $410 $419 $1,307
Physician Preference Items (PPIs)
Patellar Knee Prosth. 6 $438 0.23 35.5 100.2 8 $420 $455 $307
Acetabular Hip Prosth. 24 $1,128 0.24 3.6 100.9 43 $1,116 $1,259 $3,726
Drug Eluting Stents 4 $1,361 0.06 119.8 176.8 4 $1,351 $1,352 $127
Humeral Shoulder Prosth. 17 $2,118 0.23 1.9 99.9 22 $2,113 $2,249 $1,810
Average(4) 13 $1,261 0.19 40.2 119.5 19 $1,250 $1,329 $1,492

We also explore the comparative static of how choice sets and prices change as search

costs decrease by half. Specifically, we compute counterfactual choice sets J c
ht, by drawing

counterfactual ξkht for k 6∈ Jht, ordering these brands by the expected value of adding them

to the choice set AVk(Jht ∪ k) − sckht/2, and adding them to the choice set until it is no

longer beneficial to do so.47 We then recompute prices and quantities in equilibrium in each

47k(n+1) such that AVk(n+1)(J (n)
ht )− sck(n+1)ht/2 < 0, starting with n = 0 and J (0)

ht = Jht.

35



hospital-year for this new choice set, J c
ht.

48

The results are summarized in the right panel (columns 7-10) of Table 4. When search

costs are cut in half, choice sets increase by about 50 percent for PPIs and more than triple

for non-PPIs, on average. Relating this back to the full set of potential suppliers, hospitals in

this counterfactual now contract with about 25 percent of all potential suppliers, vs. about

10 percent in the data.

Columns 7 displays mean counterfactual equilibrium prices, but weighted by the quanti-

ties in the data (in particular, qwk = 0 for any counterfactual k added to the choice set from

the data), thus focusing purely on the competitive effect of a large choice set on prices. This

effect on prices is modest, decreasing average prices by 0-7 percent, depending on the prod-

uct category. This is driven by the low price sensitivity estimates (added values do not drop

dramatically as brands are added to the choice set) and low percentages of the bargaining

split going to manufacturers (muting the effect of any change in added values on prices).

Columns 8 weights by the counterfactual quantities, showing the additional effect of new

purchasing patterns. In all but a few categories, this increases average prices per unit relative

to the weighting using the quantities from the data. This indicates that hospitals tend to

purchase more expensive brands as their choice sets grow. Of course, by assumption of utility

maximization, hospital consumer surplus is growing too, so that these higher prices are more

than offset by higher quality of these more expensive brands. The final column of Table 4

measures the change in consumer surplus in moving from the data to this counterfactual, in

dollars per device used. Related to the low price sensitivity and large added values estimated,

the additional surplus from expanding the choice set is often large, making it clear that these

consumer surplus benefits, rather than savings in prices paid, are the primary driver behind

the growing choice sets in this counterfactual.

4.3.1 Heterogeneity in contracting cost effects across hospitals and brands

Given the large heterogeneity across hospitals and brands in the data, the average effects of

decreasing search costs are likely to mask large heterogeneity in effects at these individual

business establishments. We examine this issue by summarizing the heterogeneity in results

of this counterfactual at the brand-hospital level across hospitals and brands. Table 5 below

summarizes the distribution of these changes across hospitals and brands for each product

category, in percent terms relative to the original spend in the data to facilitate comparisons

across hospitals, brands, and categories.

The top panel of Table 5 shows that outcomes across hospitals in the counterfactual with

48Bargaining unobservables for new additions to the choice set are drawn from the empirical distribution
of η estimates.
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Table 5: Lowering Search Costs: Heterogeneity Across Hospitals and Brands

All numbers represent percent changes moving to low search cost counterfactuals from status quo:
µ σ p10 p50 p90

Hospital outcomes
Non-PPIs
|Jh| 4.17 5.37 0.61 2.63 9.41
p̄h(qwJh

) -0.07 0.04 -0.13 -0.06 -0.02

p̄h(qwJ c
h

) 0.61 0.73 -0.08 0.43 1.55

CSh 12.16 43.61 0.59 2.00 13.63
PPIs
|Jh| 0.74 1.58 0.04 0.25 1.85
p̄h(qwJh

) -0.02 0.03 -0.04 -0.00 -0.00

p̄h(qwJ c
h

) 0.07 0.13 -0.04 0.03 0.23

CSh 0.62 0.86 0.06 0.34 1.50

Supplier outcomes
Non-PPIs
|Hj |/|H| 14.88 19.10 0.97 7.37 39.91
πj 1343.30 4781.29 0.17 18.81 3052.33
PPIs
|Hj |/|H| 5.20 10.61 0.08 1.35 13.89
πj 30.47 108.17 -0.13 0.33 61.51

lower search costs are quite heterogeneous, and also quite skewed. Some hospitals in the

bottom part of the distribution see modest changes, and some in the upper tail see enor-

mous changes, especially in the number of suppliers contracted with and consumer surplus.

These estimates come with a number of caveats already mentioned regarding robustness to

assumptions in search cost estimation and counterfactual computation, but it is clear that

there are a set of hospitals with ex-ante “bad” supplier sets who benefit greatly from adding

more, better value suppliers.

Similarly, the lower panel of Table 5 shows results across individual brands, aggregated

over product categories. The average effects are to greatly increase the percent of hospitals

in which the average product is present (over double at the median for PPIs) and increase

profits (33 percent for PPIs). However, these results are again quite heterogeneous with

a long tail of enormous winners – those brands of relatively high value that were in few

hospitals’ choice sets ex-ante. Different from hospitals, though, the supplier market does see

some losers – those brands of relatively low value that were in many hospitals’ choice sets

ex-ante (e.g. the tenth percentile of brands in PPIs see a 13 percent decrease in profits).

5 Conclusion

Price dispersion across buyers for the same exact product must come from dispersion in

marginal costs of distribution or dispersion in markups. Thus, absent the former, price

dispersion is an indicator of market power, and understanding the economic forces under-
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lying the price dispersion is critical for understanding impediments to market efficiency. In

business-to-business markets, price dispersion across buyers due to variation in markups is

of antitrust interest per se, due to its potential impact on downstream competition.

In this paper, we explore price dispersion in a large and policy-relevant market: hospi-

tal supply contracting. In detailed data from hospital purchase orders across a variety of

product markets, we document substantial price dispersion across hospitals for the same

brands purchased from the same vendors. In spite of the fact that the demand side in this

application solely includes hospitals, there is large variation across product categories in the

preferences of end users, the concentration and bargaining power of suppliers, and the po-

tential importance of information and search/contracting frictions. We document reduced

form evidence suggesting that all of these features may play some role in the observed data.

We then develop a structural model allowing for heterogeneity across hospital buyers in

demand for differentiated products, price negotiations, and frictions in the search/contracting

process that determines who contracts with whom. We address the problem of potential

selection of suppliers based on unobserved preferences by using a control function based on

hospital exposure to a vendor in product categories that are likely unrelated in terms of

user preferences, but potentially related at an administrative level through their impact on

contracting costs. We also leverage exogenous variation in prices due to the introduction

of benchmarking information to the hospitals in the sample. The “generic” nature of these

identification strategies allows us to obtain credible estimates of demand and supply across

a large variety of product categories. Finally, we estimate search/contracting frictions using

a moment inequalities approach that is computationally feasible and accommodates various

forms of the search/contracting process, which we do not observe directly.

Our estimates suggest that large markups are primarily driven by large perceived product

differentiation and lack of price sensitivity among health care providers in their product us-

age decisions. This problem is especially severe in “physician preference items”, where price

sensitivity is more than an order of magnitude lower than in other non-PPI medical/surgical

supplies. Hospital purchasing administrators are able to counteract this somewhat by exer-

cising a large degree of monopsony power in their price negotiations, but this ability varies

widely across hospitals, driving most of the observed price dispersion across hospitals.

We also compute counterfactual equilibrium choice sets, prices, and quantities under a

one half reduction in estimated search costs. We find small to moderate average effects

on choice sets and prices, but these effects are extremely heterogenous across hospitals and

brands. Hospitals with previously small and low quality choice sets can see large benefits of

lower search costs, as can brands that are high quality but also have high search costs.

Taken together, our results suggest that current markups are driven primarily by lack of
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price sensitivity, supporting initiatives to align physician incentives with hospital costs when

possible. Some high quality but high cost brands seem disproportionately left out of choice

sets, suggesting there may also be important work to be done aligning hospital administrator

and patient/physician incentives. However, without better understanding the determinants

of physician’s revealed preferences, it is difficult to draw strong welfare conclusions on this

tension. The potentially large health quality and costs at stake suggest unpacking these

issues as an important area for further research.
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A Data Appendix

The data used in this project are from the PriceGuide
TM

benchmarking service offered by

the ECRI Institute, a non-profit health care research organization. The PriceGuide data are

expected to be of high quality for several reasons. First, the hospital supply transactions are

typically transmitted as a direct extract from a hospital’s materials management database

to the PriceGuide benchmarking portal. Second, hospitals have strong incentives to report

accurately because the analytics the benchmarking service’s web portal provides are based

on comparing the hospital’s submitted data to that of others in the database. Finally, as

discussed in Grennan and Swanson (2019), at least for coronary stents, the distribution of

prices observed in hospitals’ pre-join benchmarking data is similar to that observed in an

external, representative market research dataset. Nevertheless, supply and demand analysis

requires an analytic sample that is complete at the hospital-product category level, contain-

ing all relevant substitutes and only relevant substitutes, and with comparable prices and

units across all observations. Thus, our analyses required several cleaning steps beyond the

processing undertaken by ECRI for the purposes of their within-SKU PriceGuide analytics.49

In this Appendix, we describe the process we used to construct the final analytic sample.

This process is intended to focus on “important,” high-spending categories with well-defined

substitutes, reported in consistent units, and with manageable file sizes.

The raw transactions data contain 116 million observations for 2,876 members across

3,394 product categories and 2.7 million stock keeping units (SKUs). Our analyses include 19

important product categories, defined by their UMDNS codes. To arrive at this set of product

categories, we looked within the top 100 categories by overall spending. From these, we

excluded categories that were too broad (involving products that were not clearly substitutes)

or where data consistency seemed to be an issue. Regarding the first cut, we selected eight

categories by hand that seemed excessively broad based on their UMDNS names: Blood

Collection Tubes, Clinical Reagents, Computer Supplies, In-Vitro Diagnostic (IVD) Kits,

Industrial Supplies, Office Supplies, Patient Education Materials, and Pharmaceuticals.50

Regarding the second cut, demand estimation requires that we analyze quantities across

hospital-years, within each product category, for a well-defined unit. Although many medical

and surgical product categories are sold by the unit (e.g., a single coronary stent), others

49PriceGuide reports accurate price comparisons across all observations within the same SKU. However,
there is evidence that the data are missing some hospital-product category pairs. For example, we find it
unrealistic that some broadly used categories (e.g., examination gloves) do not include data from all hospitals.
This can occur when transactions are not submitted with informative free-text item descriptions and are
accordingly not assigned UMDNS codes by ECRI.

50For example, “IVD Kits” include microbial detection kits costing $2.14 on average, as well as tests for
antibiotic-resistant bacteria colonization costing $4,400 on average.
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are sold in pairs, boxes, cases, etc. The transactions data indicates this distinction in the

“unit of measure” field, and further notes how many subunits are in each unit of measure

using a “conversion factor” field. Using these fields, we transformed the price and quantity

variables into a price per single unit and quantity of single units purchased, respectively.

We dropped transactions that were missing either unit of measure or conversion factor data,

and, for each product category, we restricted the analysis to transactions that were reported

in the modal unit of measure (i.e., if a product category is usually sold in boxes, we include

only transactions reported in boxes in our analytic sample). Finally, we dropped product

categories from the analysis if more than thirty percent of transactions were lost when we

limited the sample to the modal unit of measure. This filter ensures that the included data

are meaningfully representative of the category.51

Next, for reasons of practicality, we exclude product categories with prohibitively large

datasets. We drop products requiring greater than 20GB of RAM for the random forest

procedure we use to estimate market size52 or greater than 50GB of RAM for supply and

demand estimation.53 Our supply and demand estimation also includes large matrices of

fixed effects, many of which are inherently sparse. This requires two additional filters: to

speed up the procedure that removes linearly dependent columns, we drop categories with

Njht > 50, 00054; and we only keep categories such that all hospital fixed effects survive the

above procedure.55

Finally, we dropped several product categories from our analysis due to incompatibilities

with the identification strategy detailed in Section 3.1.1. In order to address the identification

problem introduced by selection of brands into each hospital’s consideration set, we use

instruments based on exposure of hospitals to vendors across dissimilar product categories.

This approach requires a measure of dissimilarity – a starting point for this classification

approach is based on UMDNS codes’ relative positions in a UMDNS hierarchy, which is

missing for eleven of the remaining product categories.56

Our “one-size-fits-all” identification strategy is quite powerful for many heterogeneous

51At this stage, we dropped five additional categories: Examination Gloves, IV Solutions, MRI Contrast,
Procedure Kits, and Surgical Packs.

52Cochlear Stimulators, Incontinence Neurostimulators, Mammary Prostheses, Skin Expanders, Vagus
Nerve Stimulators, and Ventricular Assist Devices.

53Batteries, Dressings, Femoral Knee Prostheses, IV Administration Kits, IV Tubing Extensions, Surgical
Staplers, Sutures, and Tibial Knee Prostheses.

54Balloon Catheters, Bone Screws, Drill Bits, Femoral Hip Prostheses, Guide Wires, Guiding Catheters,
and Polyglactin Sutures.

55Atherectomy Catheters, Bone Plates, Reconstructive Tissue Material, Tissue Fusion Devices, and Total
Knee Prostheses are excluded at this stage

56Antibiotic Orthopedic Cement, Cranial Bone Screws, IV Saline, Long Term IV Catheters, Spinal Bone
Plates, Spinal Bone Screws, Spinal Rod Implants, Spinal Spacers, Trauma Bone Plates, Trauma Bone Screws,
and Vascular Closure Devices.

47



product categories in our data, but (not unexpectedly) fails to be powerful for some product

categories. For example, this may happen in cases with a very limited set of vendors and

generally complete consideration sets; for such product categories, the search and contracting

costs that are a primary focus of this paper are less meaningful. We only include in our

analysis those product categories for which a joint F-test of significance of the excluded

exposure instruments in our first stage has a p-value of less than 0.1. This results in our

exclusion of 22 product categories that would not otherwise be excluded: twelve non-PPIs

such as ECG Recorders, Laparoscopic Clip Appliers, and Oxygen Sensors; and ten PPIs such

as Bare Metal Stents, Brain Stimulators, and Resynchronization Defibrillators. Similarly,

given that our analysis relies crucially on estimates of hospitals’ price sensitivity, we exclude

several product categories for which θ̂p ≥ −1−4.57

After applying the above filters, we are left with 19 important medical supply product

categories: fifteen non-PPIs (e.g., Electrosurgical Forceps, Isolation Gowns, Surgical Gloves,

and Trocars), and four PPIs (Acetabular Hip Prostheses, Drug Eluting Stents, Humeral

Shoulder Prostheses, and Patellar Knee Prostheses).

A.1 Data Cleaning and Final Sample

Above, we describe the selection of the product categories we include in our analysis. Within

the included set of product categories, we performed several additional refinements to the

sample to address variable availability, suspected errors, and management of outliers.

• First, we limit to usable transaction data (with non-missing memberid, SKU, and

manufacturer; and with positive quantity purchased). We also remove transactions

with suspected price errors (i.e., brands with mean price an order of magnitude below

the median price across brands, and transactions that are integer multiples of other

common prices for the same SKU) and transactions with prices in the tails of the

observed distribution. The main goal of the latter filter is to remove products that are

erroneously included in the product category and/or which are not substitutable with

the majority of products in the category. For example, the “surgical staplers” category

includes many stapler refill cartridges. In practice, we limit to transactions with prices

between the 5th and 95th percentiles of the price distribution.

• In addition to dropping transactions not in the modal unit of measure in each UMDNS

code or with a missing conversion factor (e.g., 10 units per box), we also drop trans-

57Bone Implant Putty, Bone Nails, Cardiac Valve Prostheses, Circular Staplers, IV Infusion Pumps,
Kyphoplasty Kits, Pacemakers, Polymeric Mesh, and Suture Anchors.
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actions with a suspicious unit of measure: with a unit of measure of either “BX” or

“CS” and with a conversion factor of 1.

• Keep only those manufacturers with sufficiently many hospital-brand-month-year ob-

servations (Nhjmy > 200) to allow us to assign brand IDs in the machine learning

procedure detailed below.

• Limit to hospitals and health systems (as opposed to laboratories); such that we observe

the member hospital’s timing of database join in the login data and can use the price

shock observed after database join to identify price elasticities; and that merge onto

the AHA survey data with non-missing location (HRR), total admissions, outpatient

admissions, overall bed size, bed size of each department (obstetric beds, cardiac ICU

beds, etc.), and full-time-equivalent staff. The AHA variables are primarily used to

construct the total market size in each category.

• Remove small hospital-years, for which demand estimation is less well-behaved and the

assumption that the consideration set is equivalent to the set of brands purchased in

that hospital-year is less palatable. In practice, we remove hospital-years with qht < 30

and hospital-years below the 5th percentile in terms of total quantity.

A.2 Identifying Brands in the Transaction Data

We utilize machine learning methods to categorize SKUs into brand IDs, in order to ap-

propriately control for brand-specific price trends. The absence of a brand identifier in the

database creates a problem of sparsity, in which many SKUs are purchased by only a small

number of hospitals, or in only a small number of months. The most thorough method

we employed to identify brands, for a subset of products, involved examining manufacturer

catalogs, finding likely brand names, searching for similar strings within the item description

field, and validating SKUs for those brands against the catalog numbers. This was infeasible

for all product categories due to the large number of manufacturers and SKUs. Additionally,

many manufacturers’ websites were found to be difficult to navigate, particularly once we

extended the analysis beyond high-dollar physician preference items. Finally, the item de-

scription field was often uninformative as to brand. Hence, we used an algorithmic approach

to assign brand identifiers for the other product categories.

Our preferred algorithm implements the Random Effect-Expectation Maximization (RE-

EM) estimation method from Sela and Simonoff (2011), which is an adaptation of a recursive

partitioning tree algorithm to allow for group effects. With no particular assumption made

about the significance of each letter within a SKU, a recursive partitioning tree allows us to
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obtain overfitting-proof groupings that minimize a 10-fold cross validation error. Further-

more, the group effects in the RE-EM estimation method allow us to control for systematic

heterogeneity in price across hospital-time.

Given a transaction i = 1, . . . , N where N is the size of the dataset within a UMDNS

code, price pi of the transaction, dummy matrix Zi indicating each transaction’s hospital-

time group, group effect bi, and attribute vector Di = {di1, . . . , diL} where dil is the lth digit

of the SKU associated with transaction i, the RE-EM proceeds as follows:

1. Initialize estimated group effect b̂i to zero.

2. Iterate through the following steps until the estimated hospital-time effect b̂i converges.

(a) Estimate a regression tree with recursive partitioning on price adjusted by hospital-

time group effect, pi − Zib̂i with attributes Di. Take the terminal nodes, j ∈ J ,

of the tree and create an indicator variable, I(Di ∈ j).

(b) Fit a linear model, pi = Zibi + I(Di ∈ j)µp + εi and extract b̂i from the model.

3. Once b̂i converges, take the final grouping j ∈ J and use it as the new product identifier

for each i.

At each iteration of step (2a), the tree is pruned using 10-fold cross validation at each split;

the model retains the simplest tree with cross validation error no more than one standard

error away from the tree with the minimum cross validation error.

With this method, we categorized 12,760 SKUs across 19 UMDNS codes into 1,682 RE-

EM brands. For surgical staplers and drug-eluting coronary stents, which we validated by

hand, we identified 3.8 RE-EM brands per “true” stapler brand, and 0.8 RE-EM brands per

“true” drug-eluting stent brand. In Appendix C, we also show sensitivity of our results to

an alternative product categorization approach.
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B Control Function Selection Correction

The logic behind our selection correction is easiest to follow in a simple model with a single

product and an outside good. Consider such a model, where we observe data across hospitals

on whether they purchase the product 1{qh > 0}, and if so, how much (qh). The hospital’s

mean (across patients) utility for that product, relative to the outside good, is δh. In practice,

δh can be inferred from quantity purchased and the market size of potential patients in a

discrete choice demand estimation exercise; e.g., δh = ln( qh
Qh−qh

) for logit demand.

Thus, we observe the distribution of mean utility, conditional on purchase: F (δh|1{qh >
0} = 1). For any counterfactuals involving what would happen if hospitals that do not

purchase the product were to purchase it, we also need the complementary conditional

distribution: F (δh|1{qh > 0} = 0). This is a counterfactual object about which we have

no information without parametric assumptions and/or a source of random assignment.

Our approach to this problem relies on a source of random assignment. Consider a

variable zh which is (conditionally) mean independent of utility E[δh|zh] = 0, but which

forces a hospital to purchase the product with probability Pr[qh > 0|zh] = g(zh). Our

approach generates a control function that uses the randomness in 1{qh > 0} induced by

zh to correct for the selection bias and recover the unconditional distribution F (δh) from

the data. We then combine this estimated unconditional distribution and the observed

distribution conditional on purchase to obtain the distribution conditional on non-purchase

that we need to consider counterfactual changes to hospital choice sets.

B.1 Monte Carlo Evidence on Performance of Control Function

Selection Correction

As discussed in Section 3.1.1, we use a control function approach to correct for potential

bias introduced by our estimation of preference parameters within an endogenously-formed

consideration set. In this Appendix, we use a simple Monte Carlo simulation to illustrate the

identification problem and to demonstrate how the control function performs in addressing

it.

First, suppose that the consideration set formation process can be well-approximated by

the following reduced-form index model:

1(j ∈ Jh) := f(φh + φj + Zjhφ
z + εjh) (16)

where we will specify f using a Probit link or, alternatively, a linear probability model

(LPM). Second, in a slightly simplified representation of our demand model, suppose that
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end user h chooses brand j from the consideration set Jh upon each use opportunity i to

maximize utility represented by:

uijh = θh + θj + ξjh + εijh (17)

The use-specific i.i.d. unobservable εijh is the standard type I extreme value error term (with

scale normalized to one), and ξjh is the unobserved average “match” value between hospital

h and brand j.

We allow for endogeneity between demand and “search” via correlation between the

search cost shock εjh and ξjh:(
ε

ξ

)
∼ N

[(
0

0

)
,

(
σ2

1 ρ

ρ σ2
2

)]

In our Monte Carlo simulation, each iteration has Ni = 500 use cases for each of Nh = 50

hospitals forming consideration sets and then choosing among Nj = 2 brands. We draw

each independent variable from the following distributions: θh ∼ U [.1, .7]; θj ∼ U [.3, .7];

φh ∼ U [0, .2]; φj ∼ U [.2, .4]; Z ∼ N (.1, .1). Finally, we let ξjh and εjh be bivariate normal

with means zero, variances of 0.5, and covariance ρ = 0.5. In Figure A1, we display the

distribution of the bias in estimated brand fixed effects: θ̂j − θj. The left panel imposes that

the true reduced-form search model is a linear probability model; the right panel imposes

that the true search model is a Probit.

Figure A1: Monte Carlo Results: Distribution of θ̂j − θj

(a) LPM
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(b) Probit
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The blue bars show the distribution of the bias in the estimated brand fixed effects
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when demand is estimated assuming no endogeneity. In each panel, the bias is positive,

suggesting that a brand’s average quality is overestimated when it is inferred only from

those hospitals that liked it well enough to put it in their consideration sets. The red bars

show the distribution of the bias when we implement a linear control function correction –

we regress a dummy for consideration set inclusion linearly on hospital and brand dummies

and our excluded instrument Z, then include the residual linearly as a control in the demand

model. The green bars show the distribution of the bias when we implement a Probit-based

control function correction – we perform a Probit regression of consideration set inclusion on

hospital and brand dummies and our excluded instrument Z, then include the inverse Mills

ratio of the predicted index as a control in the demand model.

As shown in the Figure, the procedure does a good job of correcting the bias due to

consideration set endogeneity when the control function is implemented correctly based on

the “true” search model. That is, the estimates based on the linear control function are

unbiased when the search model was truly linear, and the estimates based on the inverse

Mills ratio control function are unbiased when the search model was truly a Probit. The

inverse Mills ratio control function also works well when the search model was truly linear,

but the estimates based on the linear control function are still slightly biased upward when

the search model was truly a Probit. Thus, the inverse Mills ratio procedure is somewhat

more robust to model misspecification.
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C Main Results With Different Levels of Product Cat-

egorization

In this Section, we present summary statistics, and supply and demand estimates under an

alternative model of brand identification. In the “Vendor” results described in the following

tables, we instead simply assume that supply and demand are each determined at the vendor

level.

Several patterns stand out. In Table A1, we observe smaller choice J and consideration

Jh sets, as expected. We observe much larger dispersion for the vendor level of aggregation

then we did for our RE-EM brands; this is not unexpected, as the vendor level of aggregation

involves coarser controls for time trends.

Table A1: Vendor – Summary of Purchasing Categories

Nh Annual
Spend
$1000s

p |J | |Jh| Pr[j∗ ∈
Jh]

Pr[j∗ =
j∗h]

µ σ
µ

µ σ
µ

Non-PPIs
Surgical Gloves 758 $85 $0.86 0.26 29 2 0.46 0.38 0.22
Pulse Oximeter Probes 366 $158 $10 0.32 43 3 0.49 0.22 0.15
Liquid Adhesives 696 $60 $17 0.21 46 2 0.52 0.37 0.28
Pneumatic Compression Cuffs 351 $103 $19 0.18 17 1 0.41 0.34 0.30
Trocars 669 $64 $35 0.24 47 4 0.45 0.49 0.19
GI Staples 609 $126 $133 0.23 24 2 0.42 0.61 0.21
Linear Staplers 583 $86 $142 0.22 25 2 0.48 0.30 0.24
Electrosurgical Forceps 453 $168 $523 0.42 18 5 0.43 0.79 0.48
Ablation/Mapping Cath. 324 $432 $880 0.31 12 5 0.35 0.96 0.49
Allografts 369 $230 $956 0.33 34 6 0.42 0.82 0.36
Bone Grafts 393 $446 $2,691 0.32 16 4 0.45 0.97 0.75
Average(11) 506 $178 $492 0.28 28 3 0.44 0.57 0.33
Physician Preference Items
Patellar Knee Prosth. 470 $100 $414 0.24 14 3 0.47 0.66 0.28
Acetabular Hip Prosth. 516 $276 $1,152 0.23 14 4 0.41 0.80 0.35
Average(2) 493 $188 $783 0.24 14 3 0.44 0.73 0.31

In Table A2, we observe similar supply and demand parameters as in our baseline results

in Table 2, with the primary exceptions that we observe higher nesting parameters for both

non-PPIs and PPIs, and we estimate higher bargaining splits for non-PPIs. This suggests

that there is more substitution among vendors than to the outside good than we observe at

the brand level, and we likely underestimate product substitutability when we aggregate to

the vendor level by insufficiently controlling for within-vendor variation in quality.
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Table A2: Demand and Pricing Parameter Estimates

p
∂E[ξ]
∂σ

λ θp∗1, 000 AV CS B p−mc
p

µ σ
µ

µ σ
µ

µ σ
µ

µ σ
µ

Other Medical/Surgical Supplies (Non-PPIs)
Surgical Gloves $0.86 0.26 0.13 0.85 -47.956 $22 0.40 0.17 0.50 1.00 0.00
Pulse Oximeter Probes $10 0.32 -0.13 0.70 -1.215 $605 0.25 0.20 0.46 1.00 0.00
Liquid Adhesives $17 0.21 0.35 0.54 -3.257 $241 0.18 0.08 0.36 0.89 0.04
Pneumatic Compression Cuffs $19 0.18 0.46 0.95 -0.928 $747 0.58 0.07 0.96 0.84 0.04
Trocars $35 0.24 0.39 0.41 -5.082 $123 0.14 0.14 0.56 0.65 0.27
GI Staples $133 0.23 0.11 0.69 -0.957 $513 0.36 0.19 0.50 0.73 0.11
Linear Staplers $142 0.22 0.00 0.71 -0.938 $638 0.40 0.15 0.74 0.47 0.29
Electrosurgical Forceps $523 0.42 0.40 0.44 -0.204 $3,196 0.19 0.13 0.69 0.69 0.25
Ablation/Mapping Cath. $880 0.31 0.72 0.00 -0.307 $2,569 0.12 0.18 0.46 0.81 0.18
Allografts $956 0.33 0.87 0.14 -0.175 $4,699 0.14 0.23 0.38 0.92 0.03
Bone Grafts $2,691 0.32 0.51 0.15 -0.103 $6,878 0.08 0.16 0.32 1.00 0.00
Average(11) $492 0.28 0.35 0.51 -5.557 $1,839 0.26 0.16 0.54 0.82 0.11
Physician Preference Items (PPIs)
Patellar Knee Prosth. $414 0.24 0.14 0.79 -0.247 $3,810 0.37 0.15 0.73 0.40 0.39
Acetabular Hip Prosth. $1,152 0.23 0.30 0.56 -0.176 $2,987 0.23 0.19 0.55 0.57 0.24
Average(2) $783 0.24 0.22 0.68 -0.211 $3,398 0.30 0.17 0.64 0.49 0.31
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D Role of Strategic Exclusion

One of our key observations in the raw data is that each hospital sources its medical and

surgical supplies from only a small subset of the vendors available in the market. One

explanation for this observation is that search and contracting frictions prevent hospitals from

making purchases from many different vendors. Another potentially important explanation

is that hospitals strategically exclude some vendors in order to strengthen their bargaining

leverage. As noted, we do not believe that it is computationally feasible for us to embed

both of these mechanisms in our model. In this paper, we focus on the role of contracting

costs. This Appendix explores the potential role of strategic exclusion, given the patterns in

our data.

We begin by testing whether the observed consideration sets, demand realizations, and

prices are consistent with a stability condition on the buyer-supplier networks in the data.

In the Nash-in-Nash with Threat of Replacement model of strategic exclusion in Ho and

Lee (2018) (hereafter, NiNTR), a given buyer-supplier network Jh is stable under NiNTR

prices if, for every supplier j in h’s network, higher bilateral surplus is generated for pair hj

by j ∈ Jh than by replacement of j with any k ∈ (J \ Jh) (holding all other agreements

−hj fixed). That is, buyer h’s network cannot exclude any supplier k that generates greater

bilateral surplus than any included supplier j. We examine an analogous condition, by testing

whether hospital h would like to unilaterally deviate by terminating its contract with one of

the included brands j ∈ Jh and replacing it with one of the excluded brands k ∈ J \ Jh,
paying the brand’s reservation price (the minimum price k would be willing to accept to be

included in h’s consideration set). That is, we ask whether:

πh(Jh, phj)− πh(Jh \ j, p−hj) ≥ max
k∈J\Jh

{πh((Jh \ j) ∪ k, {p−hj, preshk })− πh(Jh \ j, p−hj)}

where the price of the excluded brand preshk is one that makes the brand’s vendor indiffer-

ent between selling and not selling. Note that this condition deviates somewhat from the

condition in Ho and Lee (2018) in that we examine network stability at observed prices.58

To understand how well this stability condition holds in our data, we calculate gains-

from-trade for each hospital and brand pair using the demand and cost estimates presented

in Section 4. As with our estimation of search costs in Section 3.3 and our decompositions

in Section 4.3, this exercise requires that we calculate gains-from-trade for counterfactual

hospital-brand pairs. Naturally, the implied stability violations hinge crucially on whether

ξhk for k ∈ J \ Jh is particularly low. Accordingly, we explore a range of alternative

58Also unlike in Ho and Lee (2018), in our model, negotiated payments do not enter linearly into buyers’
profits, making bilateral surplus a more complicated function of price.
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assumptions regarding hospital h’s unobservable match value ξkh for brand k not in their

observed choice sets. We then calculate the fraction of markets (hospital-years) that violate

the stability condition for each product category under each set of assumptions.

Each of these exercises relies on the procedure outlined in Section 3.3 that identifies

the conditional distribution of ξhk for k ∈ J \ Jh, correcting for selection using plausibly

exogenous variation in consideration sets introduced by our exposure instruments. When we

perform this test with each ξkht generated by a random draw from the estimated conditional

distribution, almost every market violates stability. Though this seems to us like the correct

intuitive exercise, most hospital choice sets are at least an order of magnitude smaller than

the full possible set of suppliers, implying that it is almost guaranteed that at least one of

these draws will make it worth adding the product with the high draw in place of the worst

product in a choice set. In a way, this speaks how difficult it would be to rationalize the

data with strategic exclusion alone and no search/contracting costs.

To shed more light on this issue, we next explore just how extremely negative the match

values ξ for unobserved hospital-brand combinations would have to be to rationalize the data

with strategic exclusion alone. We perform the same test, fixing all of these counterfactual ξ

to relatively low values, specifically the 25th and 1st percentiles of the estimated conditional

distribution of ξk for k ∈ J \ Jh. Figure A2 Panel (a) shows the fraction of markets

violating stability for these two tests. Each bar around the markers represents one standard

error estimated from a nonparametric bootstrap, resampling at the market level.

The solid markers summarize the results assuming the matches are all at the 25th per-

centile, and all product categories but one still violate stability in over 80 percent of markets.

The single exception is drug-eluting stents, for which the total market is small |J | = 10 and

consideration sets are relatively large |Jh| = 4 on average. That is, even given these pes-

simistic match values, it is still true that there is almost always an unpurchased product of

higher value than some purchased product. The hollow markers summarize the results using

the even more extreme 1st percentile, and here we see 8 of 19 categories start to see fewer

than 25 percent violations, while 4 are still at 75 percent or above.

Figure A2 Panel (b) summarizes how extreme unobserved match values ξkht must be

for fewer than 25 percent of hospital-year markets to be estimated to be unstable in each

product category. For PPIs, these draws must be fixed at least 1.43 standard deviations

below the mean; the analogous number for non-PPIs is 2.03 standard deviations.

These results provide suggestive evidence that it is difficult to reconcile the consideration

sets and prices we observe with a model of strategic exclusion alone. That said, the tests

have caveats: in particular, they rely on supply and demand parameters inferred from an

empirical Nash-in-Nash procedure, and it may be that small consideration sets are driven
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Figure A2: Stability violations

(a) ξk fixed at p25(ξk), p1(ξk)
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(b) SD below µ(ξk) s.t. <25% markets unstable
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by a combination of strategic exclusion and search/contracting frictions. We consider this

an important topic for future research.
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E Other Tables and Figures

Table A3: Correlation between pjht and Xht – Detail

Hosp.
Beds

Sys.
Beds

Hosp. q Sys. q Full Std. Almost
Std.

Any
GPO

Big GPO

Bone Grafts -.0079* -.0025 .0038 -.0135*** -.222 -.0099 -.0123 .0075
(0.003) (0.004) (0.004) (0.004) (0.172) (0.013) (0.010) (0.007)

Ablation/Mapping Cath. -.0018 -.0083 -.0112* -.0014 .1206** .0107 -.0267 .0373***
(0.004) (0.005) (0.005) (0.005) (0.040) (0.035) (0.015) (0.009)

Allografts -.0109 -.0116* .0042 -.0084 .1751* .0082 -.016 .0149
(0.006) (0.005) (0.007) (0.007) (0.084) (0.015) (0.015) (0.013)

Electrosurgical Forceps -.005 -.0033 -.0085 .0014 -.0384 -.0078 .0134 -.0133
(0.005) (0.004) (0.006) (0.004) (0.022) (0.009) (0.016) (0.010)

Pulse Oximeter Probes -.0009 -.0058 -.0151 -.0135 -.0328 .0009 -.0327 .0341
(0.008) (0.008) (0.010) (0.010) (0.053) (0.015) (0.033) (0.022)

Orthopedic Fixation Systems -.0187* -.0075 -.0247* -.0111 0 .0126 .0272 -.0005
(0.008) (0.009) (0.013) (0.009) (0.000) (0.040) (0.027) (0.015)

GI Staples .011 -.0216*** .0041 -.0066 -.0189 .0164 -.0068 .0125
(0.008) (0.005) (0.006) (0.005) (0.032) (0.010) (0.026) (0.014)

Hemostatic Media -.006 -.0056 .0039 -.022** .0058 0 -.0005 .0148
(0.004) (0.004) (0.005) (0.007) (0.014) (0.006) (0.010) (0.008)

Pneumatic Compression Cuffs -.0097 -.0341* .0154 -.0124 -.0218 -.0084 -.0009 .0397
(0.010) (0.016) (0.012) (0.015) (0.028) (0.022) (0.050) (0.027)

Surgical Gloves .0035 -.0074** -.0006 -.001 .0462 .0117 .0134 -.0206**
(0.003) (0.003) (0.001) (0.001) (0.025) (0.009) (0.012) (0.008)

Linear Staplers .0004 -.0093 .0012 -.0091 -.0605 -.0193 -.0109 .0011
(0.005) (0.006) (0.005) (0.005) (0.038) (0.018) (0.017) (0.013)

Trocars .0017 -.0176** -.0036 -.0062 -.1388*** .0419* -.0104 .0079
(0.008) (0.006) (0.007) (0.007) (0.041) (0.021) (0.020) (0.014)

Liquid Adhesives .0107 -.0104 -.0236 -.0168* .0134 -.0147 -.0783*** .0679***
(0.007) (0.007) (0.014) (0.007) (0.016) (0.010) (0.023) (0.018)

Linen Underpads -.0074 -.0033 -.0103* .0046 -.0081 .0064 .0337 -.0589***
(0.004) (0.006) (0.005) (0.007) (0.012) (0.009) (0.020) (0.017)

Isolation Gowns -.0121 -.0147** -.0064 -.0207** -.0071 -.0041 -.0215 .0372*
(0.006) (0.005) (0.007) (0.007) (0.016) (0.013) (0.025) (0.015)

Non-PPI -.0038* -.0074*** -.0067** -.0077*** -.0113 .0038 -.0085 .0131***
(0.002) (0.002) (0.002) (0.002) (0.008) (0.004) (0.006) (0.003)

Drug Eluting Stents .0007 -.0054 -.001 -.0086** -.0026 .0016 -.0105 .004
(0.002) (0.004) (0.003) (0.003) (0.018) (0.005) (0.008) (0.007)

Acetabular Hip Prosth. .017* .0052 -.0588*** -.0484*** .0206 -.0516 .0248 .0309
(0.007) (0.007) (0.012) (0.008) (0.133) (0.040) (0.023) (0.017)

Humeral Shoulder Prosth. -.017 -.0001 -.0137 -.0321*** 0 .0185 .0531 .0052
(0.014) (0.009) (0.011) (0.007) (0.000) (0.052) (0.035) (0.019)

Patellar Knee Prosth. .0056 .0114 .006 -.0658*** -.1795*** .0381 .039 .1***
(0.013) (0.012) (0.021) (0.012) (0.043) (0.021) (0.032) (0.026)

PPI .0107* .0045 -.0315*** -.0374*** -.0574* -.0079 .0289 .022*
(0.005) (0.005) (0.007) (0.005) (0.023) (0.009) (0.016) (0.011)

Table A4: Hospital Characteristics Statistics

Njht Nh Hosp. Beds Sys. Beds Hosp. q Sys. q Full Almost Any Big
µ σ µ σ µ σ µ σ Std. Std. GPO GPO

Bone Grafts 10,199 393 434 269 1,412 1,439 173 184 326 320 0.00 0.07 0.93 0.76
Ablation/Mapping Cath. 18,071 324 484 274 1,485 1,426 466 482 906 1,009 0.00 0.01 0.94 0.77
Allografts 15,145 369 424 266 1,498 1,447 224 238 497 560 0.00 0.05 0.93 0.73
Electrosurgical Forceps 10,734 453 417 274 1,521 1,495 257 285 609 634 0.01 0.23 0.94 0.76
Pulse Oximeter Probes 4,596 366 402 297 1,306 1,249 14,198 28,502 29,652 54,933 0.10 0.65 0.94 0.76
Orthopedic Fixation Systems 22,509 441 438 268 1,531 1,480 314 463 663 719 0.00 0.01 0.94 0.75
GI Staples 12,257 609 359 256 1,454 1,532 907 1,479 2,257 2,846 0.02 0.12 0.93 0.73
Hemostatic Media 2,340 290 469 283 1,420 1,356 299 412 540 763 0.12 0.32 0.91 0.75
Pneumatic Compression Cuff 2,565 351 315 256 1,194 1,451 5,474 8,380 9,998 12,290 0.22 0.74 0.94 0.76
Surgical Gloves 17,300 758 307 255 1,444 1,525 101,077 1,450,752 370,888 3,195,868 0.04 0.18 0.93 0.71
Linear Staplers 10,996 583 340 249 1,377 1,477 580 847 1,480 1,790 0.06 0.13 0.94 0.73
Trocars 15,404 669 330 253 1,440 1,501 1,811 2,214 5,485 6,747 0.01 0.07 0.93 0.70
Liquid Adhesives 4,972 696 319 256 1,319 1,417 3,210 5,991 9,130 12,682 0.27 0.67 0.93 0.71
Linen Underpads 3,720 602 323 258 1,336 1,470 96,804 187,758 291,943 639,621 0.39 0.71 0.93 0.75
Isolation Gowns 2,261 501 320 263 1,249 1,373 41,521 121,072 102,492 209,221 0.52 0.83 0.94 0.72
Non-PPI 10,205 494 386 271 1,431 1,463 15,210 491,668 52,450 1,089,831 0.05 0.19 0.93 0.74
Drug Eluting Stents 4,430 351 441 277 1,508 1,437 677 635 1,556 1,758 0.02 0.20 0.94 0.74
Acetabular Hip Prosth. 28,305 516 360 257 1,418 1,473 239 275 652 765 0.00 0.03 0.94 0.73
Humeral Shoulder Prosth. 13,501 321 424 260 1,340 1,268 102 75 206 207 0.00 0.00 0.94 0.73
Patellar Knee Prosth. 6,310 470 335 249 1,400 1,462 226 514 613 806 0.07 0.30 0.94 0.71
PPI 13,136 414 407 271 1,459 1,438 463 562 1,102 1,466 0.01 0.14 0.94 0.73
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